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 ملخص

 ذٕفش ْزِ انًقانح .تاٚز٘ تحد يرسهسمَسرعًال خاَة  كاٌ عهُٛا أٌ. تاٚز٘ فٙ إطاس طثٛح انرطثٛقٛحنهرداسب اليُٓدح ٔ يُٓدٛح ْٕ ذعًٛى ْزا انعًم

انثٛاَاخ فٙ  عٍانًراحح، فضلا ، كافح انثٛاَاخ ٚغطٙ انرُثؤ٘، الاسرذلال ذحهٛم يرٕسظ فٙ .إشكانٛح شايهحانرُثؤ فٙ  ٚرضًٍ تانكايمتاٚز٘  حلا

نًُٕرج  انًقرشحح الإخشاءاخ طثقُا .الاعرثاس الايرثال فٙ انًسرقثم ذأخز فٙ كُٓح انرُثؤ٘ انخطأ فٙ ذقٛٛى انًثانغح، لا ٚرى انًسرقثم، تٓزِ انطشٚقح

 نهرُفٛز أداج نهًسرخذو ذٕفٛش ٌْكزا َرًكٍ و .يًاسس ًٚكٍ أٌ ذشذكة يٍ انًخرهفح انرٙ انخطأحرًالاخ ٔاضح لا ًَٕرج يٍ انرٕصم إنٗ قٕس، ذًكُا

 أٚضا، فئَّ ٚسًح انركُٕنٕخٛا انحانٛح تانًقاسَح يع تشكم خاص ْٕ يثركش ْزِ انذساسح انًعرًذج فٙ نهًعايهح ذسهسهٙال انداَة .تشكم كايم تاٚزٖ ٔ

 .ذدشتح  قثم الأٔاٌال  حٛث ٚسًح ذٕقفب قٛحأكثش أخلا انقائًح، انز٘ ٚدعم تانُسثح نهًشٚض انرحهٛم أكثش طًٕحا يٍ يرعذدج يشاحم ذخفٛف دساساخ

 

 .جـ  انقٛى طثٛح انرطثٛقٛحانرداسب الانثاٚز٘ ـ  الأسانٛة انرُثؤٚح ـ انرحهٛم : مفتاحيةكلمات الال

 

 

 

Résumé 
Ce travail est une généralisation et une systématisation de la méthodologie pour les essais cliniques dans un 

cadre Bayésien. Nous avons pu utiliser un aspect séquentiel purement Bayésien. Cet article permet une solution 

intégralement Bayésienne qui incorpore la prévision dans une problématique globale. Dans une analyse 

intermédiaire, l'inférence prédictive porte sur l'ensemble des données, celles disponibles ainsi que les données 

futures, de cette manière, l'évaluation de l'erreur de prévision n'est pas surévaluée comme dans une approche qui 

ne prend en compte que l'observation future.  Avec  des procédures proposées au modèle gaussien, il a été 

possible d’aboutir à une forme explicite des diverses probabilités d'erreurs que peut commettre le praticien. 

Ainsi, nous pouvons proposer à l'utilisateur un outil implémentable et complètement Bayésien. L'aspect 

séquentiel du traitement adopté dans cet article est un élément particulièrement innovateur par rapport à la 

technologie existante, il permet aussi d'alléger des études multi phases plus ambitieuses que l'existantes, ce qui 

pour le patient rend l'analyse plus éthique puisque cela permet un arrêt de l'expérience moins tardif. 

 

 Mots Clés : Méthodes Prédictives- Analyse Bayesienne- Essais Cliniques-p-Valeur.  

 

 

Abstract  

This work is a generalization and systematization of the methodology for clinical trials in a Bayesian framework. 

We have used a purely Bayesian sequential aspect. This article provides a solution fully Bayesian that 

incorporates the prevision in a global issue. In an intermediate analysis, the predictive inference focuses on all 

the data, the data available and future data, in this manner, the evaluation of the prevision error is not overvalued 

as in an approach that does take into account the future observation. We applied the proposed procedures to the 

Gaussian model and it was possible to reach an explicit form of the various probabilities of errors that the 

practitioner can make. Thus we can make available to the user an implementable tool and fully Bayesian. 

The sequential aspect of the treatment adopted in this paper is a particularly innovative element compared to 

existing technology; it also helps to reduce multiphase studies more ambitious than the existing, which for the 

patient makes the analysis more ethical since it allows a stoppage of the experience shorter and less tardy. 

 

Key Words: Predictive methods-Bayesian analysis-Clinical Trials-p-Value. 
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1. INTRODUCTION 

 

We propose a unified methodology for 

sequential clinical trials under a Bayesian 

paradigm. The idea is to make predictive 

inference based on the data accrued so far 

together with future data, we describe the use of 

predictive probability in deciding whether to 

stop a clinical trial, in contrast to previous work 

1, 2] where we considered only the future 

sample and this case came within the 

experimental design in clinical trials.  

This work involves theoretical developments 

motivated by practical applications to clinical 

trials in pharmacology. The aim is to improve 

the traditional methodology (use of hypothesis 

testing) increasingly regarded as insufficient, by 

supplementing it with the use of satisfaction 

indices and prevision of satisfaction. 

Convincing motivation is that the user of 

hypothesis testing is generally not satisfied with 

the brutal verdict (significant versus not 

significant) of these tests and wishes to obtain a 

more nuanced judgment. In this sense, this 

paper proposes solutions of interest easy to 

implement in practical and relatively easy to 

interpret for the users of statistical tests. 

The main tool consists of the Bayesian 

predictive probabilities, whose theoretical and 

practical importance is increasingly recognized. 

It is indeed a key to calculate the predictive 

probabilities of future results [3]. 

The exemplary situation developed in this work 

is that where one has a first set of data 

(preliminary phase), which is used to determine 

whether the experimentation should be 

abandoned or otherwise should be continued 

with a real chance of success (if the 

experimenter is satisfied in a second phase 

demonstrator). 

Based on the fact that most clinical trials 

meeting "legal" requirements (imposed by the 

control authorities for the authorization of 

placing drugs on the drug market) use as 

primary criterion of evaluation the significance 

level of a frequentist test, which is no else than 

the p-value. May we recall for this purpose that 

the p-value is always regarded as a measure of 

credibility to be attached to the null hypothesis 

that practitioners often use to answer several 

criticisms and disadvantages of the Neymann 

Pearson approach [4]. 

 

We propose to calculate an index of satisfaction 

which is a function of the level p which is zero 

in case of non-significant result. Given the 

available data, we can calculate a prevision of 

satisfaction for future data as the expected 

Bayesian predictive index conditional on 

previous observations. The Bayesian predictive 

probability turns out to be a complementary 

concept compared to that of the power and we 

recommend its use routinely for planning tests 

[5]. Its use may avoid the experimenters many 

illusions about the chances of actually reaching 

a desired conclusion. 

Two families of limited and unlimited indices 

are defined and their predictive distributions in 

the exponential models are derived and studied 

in [1, 2]. Numerical applications were used to 

compare these indices with those proposed in 

the literature and also demonstrate the 

methodological interest of the approach. 

The predictive probabilities can also be used for 

intermediate analyses. If, for example, we want 

to show the superiority of one treatment, it is 

essential to stop the trial as quickly as possible, 

either because we have sufficient evidence for 

the conclusion desired or mainly because we 

see that the treatment is ineffective. 

Intermediate analyzes are performed for which 

a predictive Bayesian approach has been 

proposed [6 - 8]. In an intermediate analysis, 

the predictive inference focuses on all the data 

(the available data and future data). 

This work is a natural extension of previous 

work [1, 2] since it offers the practitioner a 

satisfaction made by both the first and second 

phase of the experiment in the case of a 

classical or Bayesian test study. It is predicted 

using first phase unlike early results where only 

the result of the second phase is to establish a 

formal conclusion of the study. We illustrate 

the procedure by applied to the Gaussian 

model. 

 

2. STATISTICAL METHODOLOGY 

 

2.1 Choice of model 

 

The Statistical methodology has already been 

used by [9] and [10]. Recall that it is in this 

context that Brown et al. [9] and Grouin [11] 

proposed to introduce a Bayesian model. It is 

worth noting that this experimental model is 

choosing (P) a family of probability measures 

over a space of observations  in which  is the 

space of the unknown parameter and let 0 be the 

null hypothesis to be tested against the alternative 

assumption 1. Let us specify this experimental 

context that consists of two successive 

experiments, of results ’’ and ””, 

which are generally conducted independently. 

Their distributions depend, within the 
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framework of a well established model, of a 

parameter   ; consider ’’’= (’,”) rather 

than ” as is done in experimental planning, 

which this time will be used to establish the 

official conclusion of the study and determine 

the user satisfaction, we denote (’’’). But it is 

worth, based on the result of the first phase ’, 

to predict what will be the satisfaction at the 

end of the first and second phase. The 

predictive probability of obtaining the desired 

conclusion is an important element to consider 

in the decision. A very high or very weak 

probability is an argument in favor of the 

interruption of the trial. In our study, as in [12], 

the prediction is performed within a Bayesian 

context, i.e., based on the choice of a prior on 

. 

 

We consider the context in which the 

statistician "wishes" to observe a significant 

result, i.e., to reject the null hypothesis 0. His 

"satisfaction" will be greater in the case of 

rejection, and even generally increases as the 

observation that led to this rejection is 

significant. This is what users often highlight 

giving, at the end of the test procedure, the 

lowest value of the level p, it is the p-value for 

which the result ’’’ obtained would be 

considered as significant. 

 

2.2 Indices and prediction of satisfaction in 

the case of a study of two-stage test 

 

Statisticians working for some application 

sectors such as clinical trials are more often 

faced with interlocutors who find too concise 

the categorical formulations that have been 

taught and which they have traditionally 

provided. For example, the use of classical test 

theory or confidence intervals is often felt by 

the practitioner as arbitrary and ill-suited to the 

preoccupations of experimental control. 

 

Statistical practice mainly dominated by the use 

of tests is however an inevitable fact; but when 

planning experimental or intermediate analyzes 

and given the constraints which are legal and 

economic, tests are so onerous and there is 

often no interest to implement them if we can 

reasonably predict that they will lead to 

meaningful conclusions; hence the need for a 

first phase of preliminary testing lighter and 

less structured. We are therefore in a situation 

where the use of a classical test theory 

(Neymann-Pearson) is imposed. The 

dissymmetry “null hypothesis versus counter 

hypothesis” is implied by a stated desire to 

conclude in favor of the counter hypothesis. 

The user then wishes to be provided with a 

preliminary indication of the chances of seeing 

the realization of his desire, he is then mature to 

accept a Bayesian basis. 

 

It is this context which has led some researchers 

to introduce statistical tools, called predictive. 

Our aim is to propose a systematization of this 

attitude, crossing the so-called classical 

statistics and Bayesian statistics or by 

considering a fully Bayesian approach and 

limiting ourselves to the case of tests. 

 

For this purpose, we propose to the practitioner 

the use of indices that measure the degree of 

satisfaction with a given result or that reflect 

the prediction that he performs on a particular 

future event. These indicators occurring during 

or at the end of the experimental study are of a 

nature quite different from other assessment 

tools of a method such as the power function of 

a test. It is to be considered, in principle, prior 

the taking into account the experimental result 

which says little since the variable is the 

parameter, which remains unknown. 

That is how, when the user practices a test, he 

does not simply say whether the result is 

significant at level, but in this case likes to say 

to what value one could lower the level, i.e., 

increase the severity of the test while keeping a 

significant result.   

 

This practice is quite common, but is often 

content to be an indication “en plus”. One of 

our intentions is to integrate it to the predictive 

approach outlined above. 

 

- Presentation of prevision indices in the 

classical approach 

 

 Being set, let a test of level  defined by the 

critical region
 '''

1 , a first index of 

satisfaction, the one studied in [11] is defined 

by: 

 

)'"(1  )"'( )("'
1

 


   

We propose a very interesting satisfaction 

index; one can consult in this respect [1, 2], 

considered as improved for its interest in the 

concept of predicting satisfaction and defined 

as a decreasing function of the conclusive 

measure p after the processing of the data in the 

following manner: 
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  )('"

1

)('"

1

)('"

1

'" if  '";inf1

'"   if   0)'"(












 

Other words: 

 

(’’’)=1 - p. 

In the logic of the introduction of the 

satisfaction index, it is natural to propose to 

characterize the value of the test procedure 

rather than by the power function, by a 

prevision index that is the mathematical 

expectation with respect to the predictive 

probability on the complete space conditioned 

by the result of the first phase. This concept is 

introduced when, as is often the case in clinical 

trials as in [13], where we must conduct a two-

step experiment: 

 

- A first result ’, determines whether or not we 

continue the experimentation, 

 

- If the experimenter is highly satisfied and 

ones effectively continue the experimentation, 

then the result”’ of the first and second phase 

is to base the test. 

 

And if we denote 
'

'"


P  the predictive probability 

on ′′′=′×′′ of ′′′ conditionally on ’, we 

deduce a prevision index as: 

 

   
)('"

1

).'"()'"(' '

'"
  dP  

 

It is to the practitioner to decide below which 

value of the prevision of satisfaction; he gave 

up the pursuit of experience. Note that we use 

here both classical statistics and Bayesian 

statistics. 

A standard situation is that where there exist an 

application (→ℜ) such that: 

 

 *0 )(  ; t   

 

and there are (′′′→ℜ) and g(]0,1[→ℜ) such 

that: 

 )()'"( ;'")('"

1  g . 

 

Suppose further that the distribution of  under 


'"P  depends only on () (we denote Q()) 

and that the family distributions Qt is 

stochastically increasing, in the sense that  has 

a growing tendency to take large values when 

() becomes increasingly high.  

 

Then, let Gt be the distribution function of Qt. It 

is clear that: 

 

  '" if  )'"(

'"   if   0)'"(

'"

1*

)('"

1













tG
, 

 

Where Gt* is interpreted as the distribution 

function "at the frontier" of . The prevision is 

then given by: 

 

 
)('''

1

)'''( )'"(  )'( '

'''
  dP  

 


dPdP   )'"(  )'"( '

'")('''
1


 

  



  

 

 








 )()()( '

)(
)(

* 



dPxdGdxG

g
t  

- Presentation of prevision indices in the 

Bayesian approach 

 

A purely Bayesian point of view consists in 

choosing a probability , or more generally a -

finished measure on , and let 
'''

P be the 

posterior probability on , on the observation 

′′′; it is conventional in Bayesian statistics to 

propose to treat the test situation of 0 against 

1 by providing  1

''' 

P . It is indeed, clearly 

an index of satisfaction for those who want to 

conclude in favor of 1, but without any 

reference to a level of precaution . 

If we denote  
 '''

1

~
  the rejection region of the 

Bayesian test at level  i.e, 

 

 )('''

1

~ 
{’’’;  1

''' 

P   1 - }.  

 

Here again, a satisfaction index particularly 

interesting and better than the indicating 

function 
)('''

1

~   is given by: 

 
 

   







'''

11

'''

'''

1

~
'''   if               

~
'''   if    0)'''(

~





ΘP
 

 

We have 

 

 1)'''(
~

, 
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and we deduce the prediction: 

 

    .~
' '''

1

'

'''

  P  

 

It is noticed that, in a very basic case such as n-

independent real observations according to a 

one-dimensional normal distribution of 

unknown average  and known variance where 

one tests the null hypothesis of the form  ≤ 0 

and where one adopts a non informative prior 

measure in the sense of Jeffreys, i.e. here the 

Lebesgue measure, one well has in this case 

coincidence between the two approaches since: 

 
)('''

1

~   = 
)('''

1

  and  
~

 

 

3. APPLICATION TO THE GAUSSIAN 

MODEL 

 

We propose to calculate the index and the 

prediction of satisfaction in the Gaussian model 

because of the centrality of this model in 

experimental sciences and especially for 

clinical trials when the prior distribution of the 

unknown parameter is a conjugate prior or a 

non informative. 

 

The use of the conjugate distribution leads to 

relatively explicit formulas and to calculations 

of a reasonable complexity. This choice appears 

reasonable in practice and often when no 

information is available on the parameters, one 

can use Bayesian techniques that specify a state 

of ignorance. We will use the uninformative 

solution known as Jeffrey. One can consult in 

this respect [14].  

 

3.1 Introduction of the model 

 

Observations are made independent and of 

identical normal distribution  (, 2
). In all 

what follows,  (resp. ) denotes the 

cumulative distribution function (resp. density) 

of the distribution  (0, 1). 

The first result, x  is a sequence (x1,....,xk) for k 

observations and the second result, y , is a 

sequence (y1,....,yn). For obvious reasons of 

completeness, we will base all calculations on 





k

i

ix
k

x
1

 1   and 



n

j

jy
n

y
1

 1  , of respective 

distributions ) ,( 2
1N  and ) ,( 2

2N , where 

k

2

2
1   


   and 

n

2

2
2   


  . 

 

Here we assume  
2

 known and  unknown. 

 

3.2 Prediction for a prior conjugate 

distribution 

 

We choose for the prior distribution for  the 

natural conjugate, i.e., here the normal 

distribution    , 2
). 

  

- Frequentist test. The frequentist test remains a 

difficult fact to get round in statistical 

methodology in clinical trials. It is proposed to 

explicitly and numerically calculate the index 

and prevision of satisfaction in the case of a test 

at level , where the null hypothesis is of type  

≤ 0. We use a usual test on the results z of the 

first and second phase defined by: 

 

nk

nykx
z




   

Thus, the distribution of z is  2

3,N  where 

nk 


2
2

3  


  

 

  The critical region of the test is ]q0,+∞[ where 
  uq 300    

 

And 

 

  .1   u  

 

The satisfaction index is defined naturally as: 

otherwise     0         

.  if   )( 0

3

0










 
 qz

z
z




  

 

We know that the posterior distribution of  

after observing x is: 

 













22

1

2

1

2

22

1

2

1

2

,






 x
N  

and the predictive distribution of z/x is still a 

normal distribution N(m′, s’
2
) where: 
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22

1

2

1

2

'















x

nk

n

nk

kx
m  

  



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









22

1

2

1

2
2

22

2
2'






nk

n
s   

We can deduce the prediction by: 

 














0

)(
-z

   )(
3

0

q

x dzzfx



  

 

In this particular case: 

 

 
'

'-z
 

'

1
         

'

'-z
 

'

1
  )(
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0

3

0

3

0




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
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




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
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



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


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






 
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


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


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












u

q

dz
s

mz

s
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s

mz

s
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''            
'

'
mtsz

s

mz
t 


  
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
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
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This integral is approximated by a Monte-Carlo 

method  [15] by: 
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where Ti are n realizations of the probability Q 

deduced from the standard normal distribution 

by the conditioning event 
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The draw of Ti runs as follows: 

- Ui is drawn according to the uniform 

distribution U[0,1], 
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in other words, Vi  follows the uniform 

distribution on 
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(Vi), 

We have Ti which follows the distribution Q. 

A numerical application is considered below by 

simulations. As a result of these simulations, we 

obtain curves representing the prevision. 

 

- Bayesian test. If the practitioner is considering 

a study in a fully Bayesian framework and uses 

a Bayesian type test based on the same prior 

N(,²) as the calculation of the prevision of 

satisfaction; the critical region of the Bayesian 

test is therefore: 
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The satisfaction index is given by: 
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Recall that the posterior distribution of  after 

having observed z is even a normal distribution 

N(a2,
2

2b ) where: 
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If we set (v) = , then the critical region is 

given by the set of elements z such that z ≥ Q1 

with: 
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We deduce therefore the prediction of 

satisfaction index 
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where  f 
x 

(z) is the density of the conditional 

predictive distribution of z given x which is 

none other than N(m′, s’
2
) defined above. 

 

The prediction can also be written as: 
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with 
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Here again, there is no difficulty in approaching 

(x) by a Monte Carlo method. Note too, that 

the prediction has the same form as in the case 

of a classical test previously studied. 

 

3.3 Prediction for a non-informative prior 

distribution 

 

By adopting in this model a non-informative 

priors in the sense of Jeffrey, for example 

()=c (a constant), we know that the posterior 

distribution of  after observing z is a normal 

distribution  2

3,zN  and the predictive 

distribution of z conditional on x is even a 

normal distribution: 

 

N(m", s"²) 

 

with 
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We deduce that we really are in a borderline 

case of the previous study. The formalization is 

similar and the calculations are analogous and 

even simpler. 

 

3.4 Presentation of numerical results 

 

We wish to emphasize that the proposed 

predictive Bayesian approach can be used to 

predict results based on frequentist or Bayesian 

statements. We nevertheless believe that the 

frequentist approach provides a different insight 

on the data and should not be excluded. 

Prediction can be made as well for results 

derived from the frequentist approach as from 

the Bayesian approach. We present separately 

the numerical results to illustrate the 

achievement of original mathematical results 

with their pertinent application to the statistical 

analysis of real data.  Prediction can be made as 

well for results derived from the frequentist 

approach as from the Bayesian approach. 

 

The figures representing the prediction of 

satisfaction in terms of the observation x are 

presented below. Simulation programs are 

written in MATLAB. 

 

In each graph, we took 2 
= 1,  = 0 and  = 1 

which does not diminish the generality. We also 

chose to plot the curves  = 0.01, 0 = 0 and k = 

10. From one graph to the other varies the 

choice of 
2

1 , 
2

2 , 
2

3 , n and the type of the 

test, frequentist or Bayesian. The curves were 

plotted with a step of 0.01 for x and the 

following results are deduced for n = 10 or 20: 

 
n = 10 2

1 = 0.1 
2

2 = 0.1 
2

3 = 0.05 

n = 20 2

1 = 0.1 
2

2 = 0.05 
2

3 = 0.0333 

Figures 1 and 2 represent the prevision curves 

in the case of a frequentist test study, we chose 

N = 50, and graphs 3 and 4 represent the 

prevision curves in the case of a Bayesian test 

study. Recall that in this case our study is fully 

Bayesian and requires a larger number of 

simulations.
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Figure 1. Prediction of satisfaction in a frequentist 

test case where  = 0.01, k = 10, n = 20. 

 

Figure 2.  Prediction of satisfaction in a frequentist 

test case where  = 0.01, k = 10, n = 10. 

 

 
 

Figure 3. Prediction of satisfaction in a Bayesian 

test case where  = 0.01, k = 10, n = 20. 

 

 

 

Figure 4.  Prediction of satisfaction in a Bayesian 

test case where  = 0.01, k = 10, n = 10. 

 

 

Note that: 

 

Frequentist test for x = 0.5 and N = 50: 

 
k =10 n = 20  (0.5) = 0.454 

k = 10 n = 10  (0.5) = 0.481 

 

Bayesian test for x = 0.5 and N = 50: 

 
k = 10 n = 20  (0.5) = 0.926 

k = 10 n = 10  (0.5) = 0.963 
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The predictive approach therefore applies 

equally to the conclusions drawn from 

frequentist procedures as Bayesian. Even if our 

point of view is to focus on fully Bayesian 

methodology for analysis of experimental 

trials, we believe that the frequentist practice is 

now a de facto essential in the experimental 

context.  

 

The predictive Bayesian approach allows to 

take or not to take into account the contribution 

of the information outside the test under study. 

 

4. CONCLUSION  

 

The predictive procedures provide solutions to 

make a decision to stop the experiment before 

its term. It is explicitly interesting since they 

allow for ethical reasons particularly in clinical 

trials in humans involving patients' survival to 

expose the least possible subject to the least 

effective therapy. The predictive probability of 

obtaining the desired conclusion is an 

important element to consider in the decision. 

A probability very high or very low is an 

argument in favor of the termination of the 

test. We defined an index that meets the 

requirements of adequacy (through the 

inclusion of the p-value) and simplicity in 

calculations. 

 

We subsequently have proposed a prediction 

that relates to the whole data, those available 

as well as future data. In order to satisfy the 

users of statistical tests for the statistical 

analysis of real data, we have procedures 

mixtures of frequentist and Bayesian 

procedures. This crossing was possible because 

of the particular nature of clinical trials taking 

place in accordance with the legal instructions 

in two stages, the first used to determine the 

merits to proceed with the second. 

  

We also considered here solutions in a fully 

Bayesian framework and the corresponding 

calculations of prediction is feasible by Monte 

Carlo methods. The numerical applications and 

simulation results in the Gaussian model 

illustrate the innovative methodology and 

provide the practitioner with tools ready to use. 

 

In brief, this is an extremely useful work for 

clinical trials statisticians wishing to stay 

abreast with the innovative approaches that are 

being developed amid some controversies 

regarding their benefits. We think it provides a 

valuable contribution to the area of design of 

sequential clinical trials. 
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