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Résumé

Ce travail est une généralisation et une systématisation de la méthodologie pour les essais cliniques dans un
cadre Bayésien. Nous avons pu utiliser un aspect séquentiel purement Bayésien. Cet article permet une solution
intégralement Bayésienne qui incorpore la prévision dans une problématique globale. Dans une analyse
intermédiaire, l'inférence prédictive porte sur I'ensemble des données, celles disponibles ainsi que les données
futures, de cette maniere, I'évaluation de l'erreur de prévision n'est pas surévaluée comme dans une approche qui
ne prend en compte que l'observation future. Avec des procédures proposées au modéle gaussien, il a été
possible d’aboutir & une forme explicite des diverses probabilités d'erreurs que peut commettre le praticien.
Ainsi, nous pouvons proposer a l'utilisateur un outil implémentable et complétement Bayésien. L'aspect
séquentiel du traitement adopté dans cet article est un élément particuliéerement innovateur par rapport a la
technologie existante, il permet aussi d'alléger des études multi phases plus ambitieuses que I'existantes, ce qui
pour le patient rend I'analyse plus éthique puisque cela permet un arrét de I'expérience moins tardif.

Mots Clés : Méthodes Prédictives- Analyse Bayesienne- Essais Cliniques-p-Valeur.

Abstract

This work is a generalization and systematization of the methodology for clinical trials in a Bayesian framework.
We have used a purely Bayesian sequential aspect. This article provides a solution fully Bayesian that
incorporates the prevision in a global issue. In an intermediate analysis, the predictive inference focuses on all
the data, the data available and future data, in this manner, the evaluation of the prevision error is not overvalued
as in an approach that does take into account the future observation. We applied the proposed procedures to the
Gaussian model and it was possible to reach an explicit form of the various probabilities of errors that the
practitioner can make. Thus we can make available to the user an implementable tool and fully Bayesian.

The sequential aspect of the treatment adopted in this paper is a particularly innovative element compared to
existing technology; it also helps to reduce multiphase studies more ambitious than the existing, which for the
patient makes the analysis more ethical since it allows a stoppage of the experience shorter and less tardy.

Key Words: Predictive methods-Bayesian analysis-Clinical Trials-p-Value.
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1. INTRODUCTION

We propose a unified methodology for
sequential clinical trials under a Bayesian
paradigm. The idea is to make predictive
inference based on the data accrued so far
together with future data, we describe the use of
predictive probability in deciding whether to
stop a clinical trial, in contrast to previous work
[1, 2] where we considered only the future
sample and this case came within the
experimental design in clinical trials.

This work involves theoretical developments
motivated by practical applications to clinical
trials in pharmacology. The aim is to improve
the traditional methodology (use of hypothesis
testing) increasingly regarded as insufficient, by
supplementing it with the use of satisfaction
indices and prevision of satisfaction.
Convincing motivation is that the user of
hypothesis testing is generally not satisfied with
the brutal verdict (significant wversus not
significant) of these tests and wishes to obtain a
more nuanced judgment. In this sense, this
paper proposes solutions of interest easy to
implement in practical and relatively easy to
interpret for the users of statistical tests.

The main tool consists of the Bayesian
predictive probabilities, whose theoretical and
practical importance is increasingly recognized.
It is indeed a key to calculate the predictive
probabilities of future results [3].

The exemplary situation developed in this work
is that where one has a first set of data
(preliminary phase), which is used to determine
whether the experimentation should be
abandoned or otherwise should be continued
with a real chance of success (if the
experimenter is satisfied in a second phase
demonstrator).

Based on the fact that most clinical trials
meeting "legal" requirements (imposed by the
control authorities for the authorization of
placing drugs on the drug market) use as
primary criterion of evaluation the significance
level of a frequentist test, which is no else than
the p-value. May we recall for this purpose that
the p-value is always regarded as a measure of
credibility to be attached to the null hypothesis
that practitioners often use to answer several
criticisms and disadvantages of the Neymann
Pearson approach [4].

We propose to calculate an index of satisfaction
which is a function of the level p which is zero
in case of non-significant result. Given the
available data, we can calculate a prevision of
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satisfaction for future data as the expected
Bayesian predictive index conditional on
previous observations. The Bayesian predictive
probability turns out to be a complementary
concept compared to that of the power and we
recommend its use routinely for planning tests
[5]. Its use may avoid the experimenters many
illusions about the chances of actually reaching
a desired conclusion.

Two families of limited and unlimited indices
are defined and their predictive distributions in
the exponential models are derived and studied
in [1, 2]. Numerical applications were used to
compare these indices with those proposed in
the literature and also demonstrate the
methodological interest of the approach.

The predictive probabilities can also be used for
intermediate analyses. If, for example, we want
to show the superiority of one treatment, it is
essential to stop the trial as quickly as possible,
either because we have sufficient evidence for
the conclusion desired or mainly because we
see that the treatment is ineffective.
Intermediate analyzes are performed for which
a predictive Bayesian approach has been
proposed [6 - 8]. In an intermediate analysis,
the predictive inference focuses on all the data
(the available data and future data).

This work is a natural extension of previous
work [1, 2] since it offers the practitioner a
satisfaction made by both the first and second
phase of the experiment in the case of a
classical or Bayesian test study. It is predicted
using first phase unlike early results where only
the result of the second phase is to establish a
formal conclusion of the study. We illustrate
the procedure by applied to the Gaussian
model.

2. STATISTICAL METHODOLOGY
2.1 Choice of model

The Statistical methodology has already been
used by [9] and [10]. Recall that it is in this
context that Brown et al. [9] and Grouin [11]
proposed to introduce a Bayesian model. It is
worth noting that this experimental model is
choosing (Py)gce a family of probability measures
over a space of observations Q in which ® is the
space of the unknown parameter and let ®, be the
null hypothesis to be tested against the alternative
assumption ®;. Let us specify this experimental
context that consists of two successive
experiments, of results w’eQQ” and w”eQ”,
which are generally conducted independently.
Their  distributions  depend, within the
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framework of a well established model, of a
parameter € € ®; consider o’ ’= (w’,@”) rather
than @” as is done in experimental planning,
which this time will be used to establish the
official conclusion of the study and determine
the user satisfaction, we denote ¢(@’”’). But it is
worth, based on the result of the first phase @’
to predict what will be the satisfaction at the
end of the first and second phase. The
predictive probability of obtaining the desired
conclusion is an important element to consider
in the decision. A very high or very weak
probability is an argument in favor of the
interruption of the trial. In our study, as in [12],
the prediction is performed within a Bayesian
context, i.e., based on the choice of a prior on
.

We consider the context in which the
statistician "wishes" to observe a significant
result, i.e., to reject the null hypothesis ®,. His
"satisfaction" will be greater in the case of
rejection, and even generally increases as the
observation that led to this rejection is
significant. This is what users often highlight
giving, at the end of the test procedure, the
lowest value of the level p, it is the p-value for
which the result @’’’ obtained would be
considered as significant.

2.2 Indices and prediction of satisfaction in
the case of a study of two-stage test

Statisticians working for some application
sectors such as clinical trials are more often
faced with interlocutors who find too concise
the categorical formulations that have been
taught and which they have traditionally
provided. For example, the use of classical test
theory or confidence intervals is often felt by
the practitioner as arbitrary and ill-suited to the
preoccupations of experimental control.

Statistical practice mainly dominated by the use
of tests is however an inevitable fact; but when
planning experimental or intermediate analyzes
and given the constraints which are legal and
economic, tests are so onerous and there is
often no interest to implement them if we can
reasonably predict that they will lead to
meaningful conclusions; hence the need for a
first phase of preliminary testing lighter and
less structured. We are therefore in a situation
where the use of a classical test theory
(Neymann-Pearson) is imposed. The
dissymmetry “null hypothesis versus counter
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hypothesis” is implied by a stated desire to
conclude in favor of the counter hypothesis.
The user then wishes to be provided with a
preliminary indication of the chances of seeing
the realization of his desire, he is then mature to
accept a Bayesian basis.

It is this context which has led some researchers
to introduce statistical tools, called predictive.
Our aim is to propose a systematization of this
attitude, crossing the so-called classical
statistics and Bayesian statistics or by
considering a fully Bayesian approach and
limiting ourselves to the case of tests.

For this purpose, we propose to the practitioner
the use of indices that measure the degree of
satisfaction with a given result or that reflect
the prediction that he performs on a particular
future event. These indicators occurring during
or at the end of the experimental study are of a
nature quite different from other assessment
tools of a method such as the power function of
a test. It is to be considered, in principle, prior
the taking into account the experimental result
which says little since the variable is the
parameter, which remains unknown.

That is how, when the user practices a test, he
does not simply say whether the result is
significant at level ¢, but in this case likes to say
to what value one could lower the level, i.e.,
increase the severity of the test while keeping a
significant result.

This practice is quite common, but is often
content to be an indication “en plus”. One of
our intentions is to integrate it to the predictive
approach outlined above.

- Presentation of prevision indices in the
classical approach

a Being set, let a test of level « defined by the
critical regionQ'l"(“), a first index of
satisfaction, the one studied in [11] is defined
by:

™) =1y, (")

We propose a very interesting satisfaction
index; one can consult in this respect [1, 2],
considered as improved for its interest in the
concept of predicting satisfaction and defined
as a decreasing function of the conclusive
measure p after the processing of the data in the
following manner:
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d@")=0 if o"eq™
=1-inf {,B; "€ Q'l“(ﬂ)} if 0"

Other words:

Ko’ )=1-p.

In the logic of the introduction of the
satisfaction index, it is natural to propose to
characterize the value of the test procedure
rather than by the power function, by a
prevision index that is the mathematical
expectation with respect to the predictive
probability on the complete space conditioned
by the result of the first phase. This concept is
introduced when, as is often the case in clinical
trials as in [13], where we must conduct a two-
step experiment:

- A first result @’, determines whether or not we
continue the experimentation,

- If the experimenter is highly satisfied and
ones effectively continue the experimentation,
then the resultw”’ of the first and second phase
is to base the test.

And if we denote Pg.’.'. the predictive probability

on Q"=Q'xQ" of @' conditionally on @’, we
deduce a prevision index as:

2(@)= [ ., #e")Py (o).

It is to the practitioner to decide below which
value of the prevision of satisfaction; he gave
up the pursuit of experience. Note that we use
here both classical statistics and Bayesian
statistics.

A standard situation is that where there exist an
application ¥(®—%R) such that:

0, =1{6; ()<t}

and there are (QQ""—%R) and g(]0,1[—%R) such
that:

Q@ ={w"; &@") <g(a)}.

Suppose further that the distribution of & under
Pg depends only on y(6) (we denote Q)

and that the family distributions Q; is
stochastically increasing, in the sense that & has
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a growing tendency to take large values when
w(6) becomes increasingly high.

Then, let G; be the distribution function of Q.. It
is clear that:

H@")=0 if o"e®
=Gu(0") if @"eQ@

Where Gy is interpreted as the distribution
function "at the frontier" of & The prevision is
then given by:

(') = IQ;W #(@")Pon (deo™")
= Jo| [0 @) P (4™ | 5 a0

=[]0 00 900 0

- Presentation of prevision indices in the
Bayesian approach

A purely Bayesian point of view consists in
choosing a probability z, or more generally a o~

finished measure on @, and let PY be the

posterior probability on ®, on the observation
@'", it is conventional in Bayesian statistics to
propose to treat the test situation of ®, against

®, by providing P2"(®,). It is indeed, clearly
an index of satisfaction for those who want to

conclude in favor of ®,, but without any
reference to a level of precaution c.

If we denote Q) the rejection region of the
Bayesian test at level ai.e,

Q) ={w"; Py (©,) > 1- a}.
Here again, a satisfaction index particularly
interesting and better than the indicating
function ;) is given by:
5((()“') — o |f a)lllg é;'(a)

=PY(@,) if w"eq®
We have

$(@")>1-a,
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and we deduce the prediction:
(') = P2 (G))

It is noticed that, in a very basic case such as n-
independent real observations according to a
one-dimensional  normal  distribution  of
unknown average 6 and known variance where
one tests the null hypothesis of the form 6 < &
and where one adopts a non informative prior
measure in the sense of Jeffreys, i.e. here the
Lebesgue measure, one well has in this case
coincidence between the two approaches since:

Q@ =0 and  f=¢

3. APPLICATION TO THE GAUSSIAN
MODEL

We propose to calculate the index and the
prediction of satisfaction in the Gaussian model
because of the centrality of this model in
experimental sciences and especially for
clinical trials when the prior distribution of the
unknown parameter is a conjugate prior or a
non informative.

The use of the conjugate distribution leads to
relatively explicit formulas and to calculations
of a reasonable complexity. This choice appears
reasonable in practice and often when no
information is available on the parameters, one
can use Bayesian techniques that specify a state
of ignorance. We will use the uninformative
solution known as Jeffrey. One can consult in
this respect [14].

3.1 Introduction of the model

Observations are made independent and of
identical normal distribution N (6, ¢%). In all
what follows, @ (resp.¢p ) denotes the
cumulative distribution function (resp. density)
of the distribution &V (0, 1).

The first result, X is a sequence (Xy,....,X) for k

observations and the second result, y, is a

sequence (Yi,....,.¥n). For obvious reasons of
completeness, we will base all calculations on

k n
X = % dX% and y= % Dyj. of respective
i1 =

distributions N(6, o7) and N(6, o%), where
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o2 o2
of=——and o5 =—.
n

k

Here we assume o known and & unknown.

3.2 Prediction for a prior conjugate
distribution

We choose for the prior distribution for & the
natural conjugate, i.e., here the normal
distribution 1= N (8, 7).

- Frequentist test. The frequentist test remains a
difficult fact to get round in statistical
methodology in clinical trials. It is proposed to
explicitly and numerically calculate the index
and prevision of satisfaction in the case of a test
at level «, where the null hypothesis is of type 6
< 6. We use a usual test on the results z of the
first and second phase defined by:

Z_kx+ny
k+n

Thus, the distribution of zis N(6,o?) where

The critical region of the test is ]go,+oo[ where
do =6, + o3,

And
CD(u; ) =l-a.
The satisfaction index is defined naturally as:

z—-6,

O3

¢(z):d)[ ] if z=>q,.

=0 otherwise

We know that the posterior distribution of &
after observing x is:

N(T2X+O-125 rZO'fJ

2 2 7 2 2
o, +1t° oy +7T

and the predictive distribution of z/x is still a
normal distribution N(m', s %) where:
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kx n  ’x+06
+

:k+n K+n

2 2
o, +7

We can deduce the prediction by:

7(X) = jq*f q{z'—‘%jf *(2)dz

O3

In this particular case:

This integral is approximated by a Monte-Carlo
method [15] by:

[1_ q)(ao +o,ul — mﬂ
R —

where T; are n realizations of the probability Q
deduced from the standard normal distribution
by the conditioning event

+ 1
{00 +o,u, —m 10{
S

1o, | T + M=% _,00
D S

N = o, /s’

The draw of T; runs as follows:
- U; is drawn according to the uniform

distribution Uy 4y,
2

v :(90 + o] - m‘jJ{l_q{eo +oul—m
S s

in other words, V; follows the uniform
distribution on

{00 +oul —m 1{
S' 1 1

Ti = (D_l (Vi),
We have T; which follows the distribution Q.
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7(X) =§J.q:w @(Z;-@O ](p( z —Slmljdz

Ll o276 (p[z—m
S'Jb+o3u, O, S'

Je

Z—M
t=—vo = z=ts+m
S
7(X) = [ e - @(w}oa)dt
s' 0-3
. e
= [oy oz -m P ——=— |p(t)dlt
- s GS/S

m'-6,

g o(t)

. r(Mdt
o,ls' 1_(1{490 +o,u; — m'jl[g"mif“m ,o{( )
Sl

A numerical application is considered below by
simulations. As a result of these simulations, we
obtain curves representing the prevision.

- Bayesian test. If the practitioner is considering
a study in a fully Bayesian framework and uses
a Bayesian type test based on the same prior
N(o,72) as the calculation of the prevision of
satisfaction; the critical region of the Bayesian
test is therefore:

Q'@ —{z; pz(@,) 21- a}.
The satisfaction index is given by:

$(2)=0 if zQ)@
=PX(®,) if zeQ)«

Recall that the posterior distribution of @ after
having observed z is even a normal distribution

N(az, b? ) where:

T22+0'§§
a, = 2 2
o5 +7T
and
2_2
b? — o5T
2 2 2
c;+T
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If we set ®(v,) = «, then the critical region is
given by the set of elements z such that z > Q,
with:

2 2 2 2 2
0 - 490(0'3 +7T )—Vaa?,z'\/ag +7 —635.
1

- 2
T

We deduce therefore the prediction of
satisfaction index

o—a,

z(x)= ;[I;b—lze( b2 )dé’}f"(z)dz’

where f *(z) is the density of the conditional
predictive distribution of z given x which is
none other than N(m'’, s ) defined above.

The prediction can also be written as:

z(x)= I(: CI)(aZb—_Zgoj f *(z)dz
o (1)( Z';?‘"jf “(2')dz,

with

at— (0‘5 + 72)6’0 —’m'—-cis

?s'

and
t"= 0'32'(03? + 2'2)

Here again, there is no difficulty in approaching
n(X) by a Monte Carlo method. Note too, that
the prediction has the same form as in the case
of a classical test previously studied.

3.3 Prediction for a non-informative prior
distribution

By adopting in this model a non-informative
priors in the sense of Jeffrey, for example
(6)=c (a constant), we know that the posterior
distribution of @ after observing z is a normal
distribution N(z,ag) and the predictive
distribution of z conditional on x is even a
normal distribution:

N(m", s"2)
Figures 1 and 2 represent the prevision curves

in the case of a frequentist test study, we chose
N = 50, and graphs 3 and 4 represent the
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with

m"=x

and

"k fny (o3 o)

We deduce that we really are in a borderline
case of the previous study. The formalization is
similar and the calculations are analogous and
even simpler.

3.4 Presentation of numerical results

We wish to emphasize that the proposed
predictive Bayesian approach can be used to
predict results based on frequentist or Bayesian
statements. We nevertheless believe that the
frequentist approach provides a different insight
on the data and should not be excluded.
Prediction can be made as well for results
derived from the frequentist approach as from
the Bayesian approach. We present separately
the numerical results to illustrate the
achievement of original mathematical results
with their pertinent application to the statistical
analysis of real data. Prediction can be made as
well for results derived from the frequentist
approach as from the Bayesian approach.

The figures representing the prediction of
satisfaction in terms of the observation x are
presented below. Simulation programs are
written in MATLAB.

In each graph, we took ¢?=1, §=0and r=1
which does not diminish the generality. We also
chose to plot the curves & =0.01, =0and k =
10. From one graph to the other varies the

choice of o}, o2, o, n and the type of the

test, frequentist or Bayesian. The curves were
plotted with a step of 0.01 for x and the
following results are deduced for n = 10 or 20:

=10 1 52-01 | o?=01 | o©2=005

=20 | 52-01 | 022005 | 02=00333

prevision curves in the case of a Bayesian test
study. Recall that in this case our study is fully
Bayesian and requires a larger number of
simulations.
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Figure 1. Prediction of satisfaction in a frequentist Figure 3. Prediction of satisfaction in a Bayesian
test case where o= 0.01, k = 10, n = 20. test case where o= 0.01, k = 10, n = 20.

- 0 1 2 3 4

Figure 4. Prediction of satisfaction in a Bayesian

Figure 2. Prediction of satisfaction in a frequentist
test case where o = 0.01, k = 10, n = 10.

test case where o= 0.01, k =10, n = 10.

Note that:

Frequentist test for x = 0.5 and N = 50:

k=10 n=20 7(0.5) = 0.454
k=10 n=10 7(0.5) = 0.481

Bayesian test for x = 0.5 and N = 50:

k=10 n=20 7(0.5) = 0.926
k=10 n=10 7(0.5) = 0.963
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The predictive approach therefore applies
equally to the conclusions drawn from
frequentist procedures as Bayesian. Even if our
point of view is to focus on fully Bayesian
methodology for analysis of experimental
trials, we believe that the frequentist practice is
now a de facto essential in the experimental
context.

The predictive Bayesian approach allows to
take or not to take into account the contribution
of the information outside the test under study.

4. CONCLUSION

The predictive procedures provide solutions to
make a decision to stop the experiment before
its term. It is explicitly interesting since they
allow for ethical reasons particularly in clinical
trials in humans involving patients' survival to
expose the least possible subject to the least
effective therapy. The predictive probability of
obtaining the desired conclusion is an
important element to consider in the decision.
A probability very high or very low is an
argument in favor of the termination of the
test. We defined an index that meets the
requirements of adequacy (through the
inclusion of the p-value) and simplicity in
calculations.

We subsequently have proposed a prediction
that relates to the whole data, those available
as well as future data. In order to satisfy the
users of statistical tests for the statistical
analysis of real data, we have procedures
mixtures of frequentist and Bayesian
procedures. This crossing was possible because
of the particular nature of clinical trials taking
place in accordance with the legal instructions
in two stages, the first used to determine the
merits to proceed with the second.

We also considered here solutions in a fully
Bayesian framework and the corresponding
calculations of prediction is feasible by Monte
Carlo methods. The numerical applications and
simulation results in the Gaussian model
illustrate the innovative methodology and
provide the practitioner with tools ready to use.

In brief, this is an extremely useful work for
clinical trials statisticians wishing to stay
abreast with the innovative approaches that are
being developed amid some controversies
regarding their benefits. We think it provides a
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valuable contribution to the area of design of
sequential clinical trials.
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