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Abstract 

 
An overview of past research on T-stress is presented in this paper, we provides some critical review of the 

history and state of two elastic fracture mechanics and relationship to crack paths stability. The importance of 

the global approach with two parameters (K-T) or (K-A3) in the analysis of the linear elastic fracture mechanics, 

based on the effect of confinement according to the work of Williams, is presented in the field of CT specimen in 

mode I for the API X52 steel. The objective is to propose a numerical study, defining the T-stress, by applying 

the finite element method, in 2D, using the software ANSYS 15.0. Thereafter, we propose the method inspired 

from the volumetric approach developed by Pluvinage, this method is based on the determination of the effective 

stress Tef over an effective distance Xef ahead of the crack tip. Finally, it concludes with a discussion critical of 

methods of calculated the T-stress. 
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1. Introduction 

 

In fracture mechanics most interest problems are 

focused on the determination of the stress intensity 

factors K introduced by Irwin in 1948 [1,2]. The K 

describes the singular stress field ahead of a crack tip 

and governs the fracture of structures when a critical 

stress intensity factor is reached.  In practice, there is 

always a region around the crack tip where plastic  

deformation, finite strain and damage occur. 

Consequently, the stresses do not follow just the 

singular stress term inside this region and generally 

are leveled off due to damage of the material. 

This approach requires that constraint in the test 

specimen approximate that of the structure to provide 

an “effective” toughness for use in a structural 

integrity assessment. The appropriate constraint is 

achieved by matching thickness and crack depth 

between specimen and structure. Experimental 

studies [2,3] demonstrate the validity of this approach. 

These studies show that the use of geometry 
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dependent fracture toughness values allows more 

accurate prediction of the fracture performance of 

structures then it is possible to conventional fracture 

mechanics. 

The importance of the two-parameter approach in 

linear elastic fracture mechanics analysis is 

increasingly being recognized for fracture assessments 

in engineering applications. The consideration of the 

second parameter, namely, the elastic T-stress, allows 

estimating the level of constraint at a crack or notch 

tip. 

The most important development is the nonvanishing 

parameters of Williams [3] equations. The second 

term is called the T-stress. The value of Txx, or simply 

T, is constant stresses acting parallel to the crack line 

in the direction xx with a magnitude proportional to 

the gross stress in the vicinity of the crack. The third 

term A3 is sometimes used as a transferability 

parameter like the T-stress. 

Analytical and experimental studies have showed that 

the T parameter can be used as a measure of 

constraint for contained yielding; see for example 

Sumpter [4]. Chao et al. [5] and Hancock et al. [6] 

have shown that fracture toughness increases when 

(–T) increases.  In literature, many authors focused 

on the second parameter are the so-called T-Stress 

term witch describes a constant stress parallel to the 

crack direction [7-17]. The non-singular term T 

represents a tension (or compression) stress. Positive 

T-stress strengthens the level of crack tip stress 

triaxiality and leads to high crack-tip constraint while 

negative T-stress leads to the lost of constraint. The 

value of T is sensitive to loading mode [18-21], 

specimen geometry [22-25], specimen and crack sizes 

[21], the T-stress increases from high negative value 

to low negative or positive values when specimen 

loading mode and geometry change from tension to 

bending. Sherry et al [26] indicates that the stress 

intensity factor over T ratio increases non linearly 

with non dimensional crack length. Rice [27], Larsson 

and Carlsson [28] have shown that sign and 

magnitude of the T-stress substantially change the 

size and shape of the plane strain crack tip plastic 

zone. Positive or negative the T-stress increases the 

plastic zone size comparing with no T-stress situation. 

In plane strain, plastic zone is oriented along crack 

extension for T > 0 and in opposite sense when T<0. It 

has been noted that in the Paris law regime, fatigue 

crack growth rate decreases when T increase [25]. 

Analytical and experimental studies show that the 

T-stress can be used as a measure of constraint ahead 

of the crack tip. Sumpter [4], Chao et al [29] and 

Hancock et al [6] have shown that the fracture 

toughness increases when (–T) increases. It has been 

seen that the T-stress has an influence on crack 

propagation after initiation [13]. Negative T-stress 

values stabilise crack path. In opposite, positive 

T-stress value induces crack bifurcation [25]. A 

number of methods for obtaining T for a variety of 

loading conditions and geometries have been 

developed over the last 42 years. Some of the major 

methods are briefly described for the determination 

of T-stress solutions the following methods were 

applied; westergard stress function [30] the williams 

(Airy) stress function [3] the Green’s function method 

[31] and the principle of superposition used by 

[32-37]. Other methods given by Williams [3] (1957)), 

Obtained the displacement and stress fields at the 

vicinity of a two-dimensional crack tip by the 

Eigen-function expansion method. Several numerical 

works used William's equation for obtaining the 

T-stress; the Stress Difference Method (SDM) of 

Yang et al. [23], Chao method [24] and the 

Displacement Method, Ayatollahi et al. [22]. 

Several authors disputed about how and at what 

distance are taking the values of the T-stress.  Yang 

et al. [23] proposed the Stress Difference Method 

(SDM) to compute T-stress at crack tip. Chao et al. 

[24], from the numerical data, indicate that near the 

crack-tip, there exists nearly constant T-stress value. 

Kardomateas et al. [38] and Sherry et al. [26] they 

told that in practice it is seen that FE results are not 
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acceptable unless a large number of elements are

used to simulate the crack tip zone. Ayatollahi et al. 

[22], indicate that the improved method of obtaining 

the T stress a reasonable distance from the crack tip. 

Without recourse to much mesh refinement is to use 

the displacements along the crack faces. Maleski et al. 

[21] has determined a modified stress difference 

method to calculate the T-stress, with extrapolation 

method. The above represents a linear relationship 
between (σxx-σyy) and 

0( )r θ = with slope D and T

being the y-intercept of a linear fit of normal 

difference data. 

According to the different methods used in the 

literature confirm that the T stress is a constant value 

at the crack tip, or nearly [22, 24]. By contradiction, a 

new approach given by Hadj Meliani et al. [39]

confirm that the T-str ess is not constant for cracks 

and notches [40] and proposed method how take an 

average value using the volumetric method [25].

In this paper, we revise the Williams equation looking 

about the analytical solutions and we proposes 

numerical work using directly a single finite element 

(FE) analysis 2D by ANSYS V15.0 program [41]. For 

the computing method, the elastic T-

and accurately by evaluating at the crack

Maleski method for computing T

presented in mode I for CT specimen by modifying 

the threes methods [22-24]. 

 

2. Background 

 

Several numerical and analytical methods were 

developed to calculate the elastic T-

Many researchers have provided T

for 2D cracked bodies under uniform tension 

bending loading conditions [13, 42-

[23] proposed the Stress Difference Method (SDM) to 

compute T-stress at crack tip. It incorporated the 

iterative single-domain dual-boundary element 

method and a tip-node rule to impose zero 
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-43]. Yang et al. 

[23] proposed the Stress Difference Method (SDM) to 

stress at crack tip. It incorporated the 

boundary element 

node rule to impose zero 

displacement jump at the crack tip (Fig.1). The 

difference between σ11 and σ

evaluate T-stress [44]. 

Chao et al. [24] has proposed a simple method to 

calculate T-stress. T-stress is evaluated from stress 

distribution generally computed by finit

method and applying σ xx in direction 

crack rear back direction) and define T

value of  σ xx in region where the value is constant 

[45]. 

Fig.1. Stress Field in the vicinity of

Ayatollahi et Al [22] have determined T stress by 

using the displacement method in finite element and 

obtain then a stabilised T-

ligament. In theory (1) should provide 

reasonable distance from the crack tip.

practice it is seen that FE results are not acceptable 

unless a large number of elements are used to 

simulate the crack tip zone, see for example 

Kardomateas et al. (1993) and Sherry et al. (1995). 

An improved method of obtaining the T

without recourse to much mesh refinement is to use 

the displacements along the crack faces. Due to 

traction free boundary conditions along the crack 

faces, Hooke’s law can be written for small strains as 

[22]: 

dx

dU
EET xx

xxxx '' === εσ
  

Where 
xxε  and Uxx are the strain and displacement 

respectively parallel-to-the-crack and 

as: 

EE ='
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nt jump at the crack tip (Fig.1). The 

and σ22 was demonstrated to 

Chao et al. [24] has proposed a simple method to 

stress is evaluated from stress 

distribution generally computed by finite element 

in direction 180θ = ° (in the 

crack rear back direction) and define T-stress as the 

in region where the value is constant 

 
Stress Field in the vicinity of the crack. 

Ayatollahi et Al [22] have determined T stress by 

using the displacement method in finite element and 

stress distribution along 

ligament. In theory (1) should provide T within a 

reasonable distance from the crack tip. But in 

practice it is seen that FE results are not acceptable 

unless a large number of elements are used to 

simulate the crack tip zone, see for example 

Kardomateas et al. (1993) and Sherry et al. (1995). 

An improved method of obtaining the T-stress 
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        (1)
 

are the strain and displacement 

crack and E’ is defined 
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Where E is Young’s modulus and υ  is Poisson’s 

ratio. Ayatollahi [22] obtained that the displacement 

method gives more reliable results with less mesh 

refinement for T in comparison with that of the stress 

method [22]. Maleski et al. [21] has determined a 

modified stress difference method to calculate the 

T-stress. The normal stress difference ahead of the 

crack is given by:  

00
( / )xx yy T D r B

θ
σ σ

=
 − = + 

              (2)  

where D is the higher-order coefficient associated 

with the r 1 term in the asymptotic expansion for     

(σ xx-σ yy) and T0. The above represents a linear 

relationship between (σ xx-σ yy) and 
0( )r θ =  with slope 

D and T-stress being the y-intecept of a linear fit of 

normal stress difference data, this is demonstrated in 

Figure 2. 
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Fig.2. Typical linear regression of finite element data to 

determine T-stress using the modified stress difference 

method of Maleski [21]. 

Hadj Meliani et al. [25] has new approach for the 

T-stress estimation for specimens with a U-notch, 

used the most simple method has been employed to 

calculate the T-stress in a notched body such as SDM. 

The T-stress for the notch has been evaluated by 

experimental and numerical methods. Hadj Meliani 

et al. [25] has compared the Volumetric Method (VM) 

in a notched body by stress difference method 

because it is the most simple and widely used and 

then allows comparison of our results. 
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Fig.3. Average value of T-stress by the volumetric method 

[25]. 

Hadj Meliani. et al. [46] has the concept of the T 

-stress as a constraint factor has been extended to 

notch tip stress distribution. The effective T -stress 

(Tef) has been estimated as the average value of the T 

-stress in the region ahead of the notch tip at the 

effective distance. The notch fracture toughness Kρ,c 

and the critical value of Tef,c have been determined 

using the volumetric method. The experimental 

method was used to validate the effective T-stress 

obtained by finite element method for different 

specimen geometries. Notch fracture toughness 

transferability has been proposed as a Kρ,c−Tef,c curve 

and established from the tests of four specimen types 

(CT, SENT, DCB and RT) made from X52 pipe steel. 

A material failure curve Kρ,c=f(Tef,c) is established for 

the specimens under consideration. Fracture 

conditions are then given by the intersection of the 

material failure curve and fracture driving force 

curve for gas pipes with the surface notch. Pluvinage 

et al. [40] has a review of the influence of T-stress on 

the crack path and out-of-plane constraint and on the 

influence of thickness on fracture toughness. 
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3. Results and Discussions 

3.1 Analytic study 

 

The in-plane linear elastic stresses around the 

crack-tip. The stresses for each of the fields can be 

written as an eigen series expansion (Williams, 1957 

[3]). Near the tip of the crack, where the higher order 

terms of the series expansion are negligible, stresses 

[22], can given by: 

 

3
cos 1 sin sin ( )

2 2 22
I

xx

K
T O r

r

θ θ θσ
π

 = − + + 
 

3
cos 1 sin sin ( )

2 2 22
I

yy

K
O r

r

θ θ θσ
π

 = + + 
 

3
sin cos cos ( )

2 2 22
I

xy

K
O r

r

θ θ θτ
π

= +

 

where the subscripts x, y and z suggests a local 

Cartesian co-coordinate system formed by the plane 

normal to the crack front and the plane tangential to 

the crack front point; r and θ  are the local polar 

co-ordinates, KI is the stress intensity factor for mode 

I. The T in Eq.(3) is the elastic T-stress, representing 

a tensile/compressive acting parallel to the cracked 

plane. 

By literature reviews, many authors [22,25,39,40] 

have been found for T-Stress calculation can be 

expressed by the following equations (Table.1):

Table.1. T-stress values according to measurement 

direction [25]. 

θ  0θ =  θ π= ±  
3

πθ = ±  θ

T xx yyσ σ−  
xxσ  1

3xx yyσ σ − 
 

 
xx yyσ σ−

This results in table 1, is given by the following steps, 

based on negligent of the higher order terms of 

equation (4), to get the following equations (6): 
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By substituting eq (6) in eq (3) to give the equation:
 

yyxx gT σθσ )(−=
          

where:     
)(

)(
)(

θ
θθ

yy

xx

f

f
g =   

The Function of g(θ ) is plotted in the Figure 5 for 

different orientations; for θ π= ±
tend to +∞ . Analytically, the T

calculated in this angle. 

Fig.5. Distribution of g

In other hand, we propose another analytical method 

to calculate the T-stress parameters. By the 

Subtraction depend on the deference of eq 

(4), describing in the equation (8), is presented in the 

Figure 6 for different angle. Table 2 recapitulates to 

T-stress evolution on the presence of the different 

angle.    
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eq (3) to give the equation: 

               
(7)

 

 

) is plotted in the Figure 5 for 

θ π= ±  the function of g(θ ) 

. Analytically, the T-stress is not 

 

( )g θ  polynomial. 

In other hand, we propose another analytical method 

stress parameters. By the 

Subtraction depend on the deference of eq (3) and eq 

(4), describing in the equation (8), is presented in the 

r different angle. Table 2 recapitulates to 

stress evolution on the presence of the different 

         
(8)
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Fig.6. Distribution of ( )h θ
 
polynomial

Table.2. Example of the recapitulative of the T

for different angular positions around the crack tip.

θ
 

0θ =  θ π= ±  
3

πθ = ±  θ

T xx yyσ σ−

 

xx yyσ σ−

 

3

2 2
I

xx yy

K

r
σ σ

π
− +

 

xx yyσ σ− +

 

In this proposed analytical method, the results by 

using the new method of william’s equation 

demonstration, given the same formulation of 

T-Stress at the angles θ = 0, 120° and 180°. But it’s 

not for another angles (see the Table 2). 

the Chao method is a method based a stress deference 

method ( 0yyσ ≈ ). So, the Chao method described in 

the table is a single case of the Stress Difference 

Method.  

The calculate of T-stress for in θ = 0°, 120° and 180° 

is based in the stress intensity factor value, this factor 

is according to the crack length so: 
 

r

aC
T yyxx

),( θσσ +−=
            

 

where:
   

( ), ( )
2

IK
C a hθ θ

π
=
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using the new method of william’s equation 

demonstration, given the same formulation of 

= 0, 120° and 180°. But it’s 

not for another angles (see the Table 2). In other side 

the Chao method is a method based a stress deference 

). So, the Chao method described in 

the table is a single case of the Stress Difference 

0°, 120° and 180° 

is based in the stress intensity factor value, this factor 

              (9)
 

3.2 Numerical Study 

 

Finite element analyses using ANSYS V15.0 

were employed to determine T for mode I using the 

Stress Difference Method (SDM), Chao method (CM) 

and Displacement method (DM). For a CT specimen 

shown in Figure 7. The crack length a

variation at 0.2 to 0.4 (Table.2). We used an element 

PLANE183, this element is defined by 8 nodes or 6 

nodes having two degrees of freedom at each node: 

translations in the nodal x and y directions. The 

element may be used as a plane element (plan

plane strain and generalized plane strain) or as 

an-axisymmetric element. This element has plasticity, 

hyperelasticity, creep, stress stiffening, large 

deflection, and large strain capabilities. It also has 

mixed formulation capability for simula

deformations of nearly incompressible elastoplastic 

materials, and fully incompressible hyperelastic 

materials. Initial state is supported. Various printout 

options are also available. We have used CT specimen 

with W= 50.8 mm (Fig.7), in two dimension

plan stress. The used load is a failure load according 

to relative crack depth 

(Table.2).  

 

Fig.7. CT specimen with a crack [46].

 

Table.2. Failure load according to relative notch depth 

of CT specimens [47].

a/W 0.2 0.3 

F [N] 32.098 25.270 

stress calculation methods in fracture mechanics computation 

    Page 21 à 31 

Finite element analyses using ANSYS V15.0 [41] 

were employed to determine T for mode I using the 

Stress Difference Method (SDM), Chao method (CM) 

and Displacement method (DM). For a CT specimen 

shown in Figure 7. The crack length a/W ratio 

variation at 0.2 to 0.4 (Table.2). We used an element 

PLANE183, this element is defined by 8 nodes or 6 

nodes having two degrees of freedom at each node: 

translations in the nodal x and y directions. The 

element may be used as a plane element (plane stress, 

plane strain and generalized plane strain) or as 

axisymmetric element. This element has plasticity, 

hyperelasticity, creep, stress stiffening, large 

deflection, and large strain capabilities. It also has 

mixed formulation capability for simulating 

deformations of nearly incompressible elastoplastic 

materials, and fully incompressible hyperelastic 

materials. Initial state is supported. Various printout 

We have used CT specimen 

= 50.8 mm (Fig.7), in two dimensional with 

plan stress. The used load is a failure load according 

to relative crack depth a/W of CT specimens 

 

CT specimen with a crack [46]. 

Failure load according to relative notch depth a/W 

of CT specimens [47]. 

0.4 0.5 0.6 

18.988 12.570 5.878 
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In figure 8 and figure 9 we present example of mesh 

and the distribution of Von Misses stress respectively, 

at crack near for a depth a/W=0.4. 
 

Fig.8. Typical meshes used for CT specimen and a/W=0.4

(a) View complete   (b) Refined mashing in near the crack 

tip. 
  

Fig.9. CT specimen (a) Evolution of stress Von Misses 

distribution for a depth ratio a/W=0.4 (b) 

contours of the stress Von Misses near the crack tip

 

Figure 10 shows a graphic representation of the stresses 

σxx,σyy and T-stress distribution, relative to a depth a/W=0.4 

and failure load 18,988 N for a angle θ =0° and 
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Fig.10. Stress distribution σxx, 

specimen for a depth a/W=0.4 and failure load 18,988 N 

 

In figure 10.(a) we have the distribution of 

they to lay a about constant distance, has to leave a 

x/a≅ 0.006, in this value we gives a constant stability 

of T-stress. In figure 10.(b) we have the three methods 

given a reliable result for a 

that σyy tend towards 0. 

 

3.2.1 Comparison of methods

 

Several numerical works used William's 

equation for obtaining the T

specimen; the Stress Difference Method (SDM), Yang 

et al. [23], Chao method [24] and the Displacement 

Method of Ayatollahi et al. [22]. The calculate the 

T-stress by this methods is based for 

describes a constant stress parallel to the crack 

direction. Chao [24] indicate that near crack tip, 

there exists nearly constant 

x/a=-0.001 to 0.01−  and this σ

T-stress. 

 

In this part we have a comparing between the tree 

method (SDM, CM and DM) in two directions (

and θ =180°), for a/W=0.4 (Fig.12).

fracture mechanics computation 

    Page 21 à 31 

27 

-0,04 -0,03 -0,02 -0,01 0,00
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 T (Stress Difference Method)

 T (Displacement Method)

 

θ =180° 

, σyy and T relative to a CT 

specimen for a depth a/W=0.4 and failure load 18,988 N  

In figure 10.(a) we have the distribution of σxx and σyy 

they to lay a about constant distance, has to leave a 

0.006, in this value we gives a constant stability 

stress. In figure 10.(b) we have the three methods 

given a reliable result for a θ =180° and we noticed 

3.2.1 Comparison of methods 

Several numerical works used William's 

for obtaining the T-stress, for a CT 

specimen; the Stress Difference Method (SDM), Yang 

et al. [23], Chao method [24] and the Displacement 

Method of Ayatollahi et al. [22]. The calculate the 

methods is based for T-Stress 

describes a constant stress parallel to the crack 

Chao [24] indicate that near crack tip, 

there exists nearly constant σxx region, that is 

and this σxx value is chosen as the 

In this part we have a comparing between the tree 

method (SDM, CM and DM) in two directions (θ =0° 

r a/W=0.4 (Fig.12). 
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(b) Forθ =180° and by three method 

Fig.11. T-Stress distribution relative to a CT specimen for a 

depth a/W=0.4 and failure load 18,988 N. 

 

In Figure 11 we have the three methods given a same 

path. But T-Stress describes a not constant stress 

parallel to the crack direction, even in the region of 

Chao we don’t give a stabilization of T-stress 

describes. It should be noted that the present results 

of the effective T-stress estimation is consistent with 

the results obtained by the method proposed by 

Maleski et al. [21]. It was suggested that the T-stress 

can be represented by the following relationship (2). 

This method is presented by blue line. The 

compression between the T-stress value at θ =0° and 

θ =180° for a/W=0.4 is give a good result. 

 

 

 

 

3.2.2 Influence of crack length a/W 

 

In this part we have a comparing between the 

tree method (SDM, CM and DM) in two directions (θ
=0° andθ =180°), for a/W=0.4. In Figure 12 it present 

example of T-stress distribution obtained by 

difference method used relative to a depth variation 

at a/w=0.2 to 0.6 and failure load for a angle θ =0° 

and θ =180°. 
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(b) For θ =180° and by three method. 

Fig.12. Stress distribution T relative to a CT specimen for a 

difference method used and value of depth a/W. 
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In Table.4 and figure 13 collect the result of the 

T-stress obtained by Finite Elements Analysis by 

Maleski method, for a/W variation at 0.2 to 0.6    in 

θ =0° and θ =180°. 

 

Table.4. Result of T-stress variation at two directions  

(θ =0° and θ =180°). 

 

a/W 
T-Stress (MPa) 

θ =0° θ =180° 

0.20 1.35 1.30 

0.225 1.20 1.18 

0.25 1.11 1.10 

0.275 1.08 1.07 

0.30 1.07 1.07 

0.35 1.12 1.12 

0.40 1.17 1.16 

0.50 1.06 1.06 

0.60 0.675 0.67 
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Fig.13. The value of T-stress variation with two directions. 

 

In figure 14 it present the variation of the tangent of 

Maleski (2) for a/w variation at 0.2 to 0.6 in θ =0° 

and θ =180°. 
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Fig.14. Tangential of Maleski distribution relative to a CT 

specimen for a depth a/W=0.2 to 0.6. 

 

In figure 14 we have the T-Stress describes a constant 

stress parallel to the crack direction at a/W=0.3 for   

θ =0°, and a/W=0.33 for θ =180°. 

 

4. Conclusions 

 

 The Williams’s type solution has been employed 

to analyse the stress distribution ahead of the crack 

tip. It was observed that the T-stress values are 

positive (tension stress) for a CT specimen in the 

interval a/W=0.2 to 0.6, and shown that the T-stress is 

not constant along ligament (θ =0°) and crack mouth 

(θ =180°) ahead of the crack tip for CT specimen. It 

was also found that the non-singular terms are not 

negligible for a crack as the distance from the crack 

tip increases. To avoid this difficulty, it suggested to 

use the Maleski method. The extrapolation method 

for calculation of T-stress value, in two direction (θ
=0° and θ =180°) ahead of the crack tip. Thus, the 

concept of the T-stress in the case of the crack stress 

distribution has been extended to the crack stress 

distribution. 

 

This result improve that the T-Stress value is not 

constant for a crack depth ratio variation, and with a 

distribution not really established as in theory. The 

distribution of σyy  is negligible for a θ =180°, in this 

angle the SDM and Chow method give approximately 
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the same result, this result is different at the result of 

AYATOLAHI [22]. The Maleski method provide a 

good result for a θ =0° and θ =180°. 
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