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A B S T R A C T 

The present work deals with a numerical study of a laminar flow in a tubular string of a 
floor slab based on a model of stabilization algorithms that of Gauss and Thomas. The 
transport equations for the motion amount and heat are the classical equations of forced 
convection. To describe the amount transfer  of the movement in the heating slab pipe  
(fluid medium), we retained to the PRANDTL simplified model  which takes into 
account the most important terms for a laminar flow in the pipeline. For this, a 
numerical resolution of the equations governing this flow has been carried out. These 
equations have been discretized by an implicit finite difference method. The algebraic 
equations systems thus obtained have been solved by the Gauss and Thomas algorithms. 
The numerical simulation results have highlighted the effect of the geometrical and 
thermal parameters of the pipe on the temperature evolution and the coolant velocity. 

RÉSUMÉ 

Le présent travail porte sur une étude numérique d’un écoulement laminaire dans une 
chaîne tubulaire d’une dalle de plancher chauffant basé sur un modèle de stabilisation 
résolu avec les algorithmes de Gausse et de Thomas. Les équations de transport de la 
quantité du mouvement et de la chaleur sont les équations classiques de la convection 
forcée. Pour décrire le transfert de la quantité du mouvement dans la canalisation de la 
dalle chauffante (milieu fluide), nous avons retenu le modèle simplifié de PRANDTL 
qui tient en compte que les termes les plus importants pour un écoulement laminaire 
dans la canalisation. Pour cela, une résolution numérique des équations régissant cet 
écoulement à été effectuée.  Ces équations ont été discrétisées par une méthode implicite 
aux différences finies. Les systèmes d'équations algébriques ainsi obtenus ont été résolus 
par les algorithmes de Gauss et Thomas. Les résultats de la simulation numérique ont 
mis en évidence l’effet des paramètres géométriques et thermiques de la canalisation sur 
l’évolution de la température et la vitesse du fluide caloporteur. 

 

1. Introduction 
Plusieurs auteurs se sont intéressés à la consommation énergétique du bâtiment en utilisant différentes méthodes et en 

étudiant différents paramètres qui peuvent contribuer à économiser de l’énergie (choix des matériaux, isolation thermique, 

infiltration d’air, équipements,…etc. [1]. La consommation énergétique des bâtiments du secteur tertiaire est difficile à 
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estimer du fait de l'importance des apports internes et solaires, de la complexité de la régulation du système de chauffage et 

de son intermittence [2].  

Dans les milieux bâtis, le confort thermique constitue une exigence essentielle à laquelle le concepteur doit apporter les 

réponses nécessaires. La définition du confort thermique est ainsi d’une grande importance pour le bâtiment afin de lui 

permettre d’atteindre ses objectifs de fonctionnalité tout en justifiant, à tort ou à raison, l’installation des équipements 

d’ambiance (chauffage, ventilation et climatisation) [3]. Le plancher chauffant, quant à lui, convient à tous les types de 

constructions neuves et de rénovation lourde. Il assure un confort thermique absolu dans l'habitat collectif ou individuel, les 

bâtiments de grand volume, le secteur tertiaire ou les collectivités (crèches, écoles, gymnases...) [4]. 

Dans ce contexte, le présent travail consiste dans un premier temps à présenter la formulation mathématique et les 

équations régissant les transferts thermiques dans les deux milieux (solide-fluide). En effet, le domaine physique, en 

l’occurrence, la dalle chauffante en béton a été décomposée numériquement en deux sous-domaines. Le premier est la 

chaine tubulaire du fluide caloporteur, qui est représentée par un canal horizontal de longueur L et de section rectangulaire 

(b×h). Les équations régissant les transferts dans ce sous-domaine sont les équations classiques de Navier-Stocks. Le 

deuxième sous-domaine est le béton d’enrobage avec l’équation de la conservation d’énergie. En revanche, le travail 

présenté est attaché avec la modélisation de l’écoulement du fluide caloporteur. 

En effet, les équations de conservation de la quantité du mouvement, la conservation de la masse et la conservation 

d’énergie sont discrétisées d’une manière implicite en utilisant la méthode des différences finies. La résolution numérique 

est effectuée par les algorithmes de Gauss et Thomas dans l’écoulement du fluide.  La résolution s’effectue colonne par 

colonne dans le sens de l’écoulement et le maillage retenu est un maillage régulier dans le domaine fluide. 

 
2. Description du problème physique 

 

Dans ce paragraphe, on se focalise sur la mise en équations du problème physique en utilisant les équations de 

conservation de la masse et de la quantité du mouvement, en plus de la distribution d’énergie dans le fluide [5].  On 

commencera par l'écriture des équations générales de Navier-Stokes, puis on passera aux différents traitements de ces 

équations pour les adapter aux conditions aux limites prises en considération. Pour cela, nous avons pris en considération 

certaines hypothèses simplificatrices nécessaires, ainsi que les conditions aux limites associées au modèle physique. 

 

Le profil de la vitesse à l’entrée du canal est supposé de type parabolique, l’eau se trouve à une température T0, avec 

une vitesse U0 et une pression constante P0. Les transferts dans le canal sont régis par les équations classiques de la 

convection forcée. Un repère cartésien est associé à ce modèle physique qui représente l’origine de ce repère est placée à 

l’extrémité inférieure de la canalisation. L’abscisse x est comptée positivement dans la direction normale à la paroi latérale 

et l’ordonnée y est comptée positivement dans la direction perpendiculaire à la paroi inferieure (Fig.1). 

 

Fig. 1- Représentation schématique du modèle physique. 
 

3. Formulation mathématique du phénomène d’écoulement du fluide 
 

Dans cette partie, nous allons exposer les différentes étapes de la formulation mathématique nécessaire pour aboutir 

aux équations finales régissant le phénomène d’écoulement du fluide dans la canalisation de la dalle chauffante. 

3.1. Hypothèses simplificatrices 
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Un ensemble d'hypothèses est retenu dans cette étude, afin de simplifier la modélisation mathématique du phénomène. 

Ces hypothèses sont issues des propriétés physiques de l'écoulement du fluide dans une conduite horizontale à section 

rectangulaire. 

Les principales hypothèses prises en compte dans cette étude peuvent se résumer comme suit : 

 le fluide est Newtonien, visqueux et incompressible ;   

 l’écoulement est transitoire, avec un régime laminaire ; 

 l’écoulement est bidimensionnel (l’écoulement n’a donc que deux composantes de la vitesse, une le long de la paroi 

et une dans la direction normale) ; 

 absence de sources internes de chaleur 0s : la puissance thermique associée à la dissipation visqueuse est 

négligée ; 

 les propriétés physiques (µ, α, ρ, λ) sont constantes. 
 

 Equations régissant le champ hydrodynamique, thermique et massique  

On exprimera les équations dans un système de coordonnées cartésiennes : 

 Les coordonnées  zyx ,, ;  

 Les vitesses  wvu ,, .  

Les équations de conservation qui régissent l’écoulement d’un fluide Newtonien dans la canalisation de la dalle 

chauffante en béton s’écrivent comme suit [4]: 

 

 Equation de continuité  
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 Equations de quantité du mouvement  

Les équations de quantité du mouvement écrites suivants les trois axes  wvu ,,  sont [5]: 
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En appliquant le bilan de la quantité du mouvement pour un domaine fixe et en se plaçant dans le cadre des hypothèses 

simplificatrices. L’équation vectorielle de la conservation de la quantité du mouvement à travers un milieu fluide s’écrit 

[4]: 
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(5) 

 

Un traitement rigoureux de la couche limite nécessiterait la résolution complète des équations de Navier-Stokes. Leur 

complexité a donné à PRANDTL l’idée de les simplifier pour ne retenir que les termes les plus importants [5]. L’idée 

principale consiste à négliger les gradients axiaux ∂/∂x devant les gradients transverses ∂/∂y. On obtient ainsi les équations 

de PRANDTL de la couche limite qui gouverne l’écoulement laminaire dans la canalisation de la dalle chauffante comme 

suit [5]: 
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(6) 

Ces équations ont été établies en supposant que  
yx 







    et que la pression ne varie pas suivant la direction ‘’Oy’’. 

Un raisonnement analogue fournit une équation simplifiée de la température comme suit : 
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 Equation de la conservation de la masse  

En se plaçant dans le cadre d’un fluide incompressible, l’équation de continuité obtenue en appliquant le principe de 

conservation de la masse, s’écrit en coordonnées cartésiennes et pour un écoulement bidimensionnel, sous la forme 

suivante [4]: 
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 Equation de conservation de l’énergie  

Le principe de la conservation de l’énergie mène à l’équation d’énergie suivante : 
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3.2. Conditions initiales et les conditions aux limites 

 

 Conditions initiales 

Le fluide est supposé initialement au repos, puis on exerce sur lui un gradient de pression constant. Ce dernier 

provoquera l’écoulement du fluide dans la conduite. Ce qui signifie que la vitesse u (x, y, t) du fluide au temps (t = 0 s) est 

nulle : 
 

  yetx0.0y,0x,u                                                             (10) 
 

 Conditions aux limites 

Du fait de l’effet des couches limites hydrodynamique de PRANDTL, les particules du fluide qui se trouvent au contact 

avec les parois s’adhèrent à ces dernières et restent immobiles : 

 

    tetxtL,0,utx,0,u                                                     
(11) 

    tetytb,0,uty,0,u                                                     (12) 

 
 

4. Variables adimensionnelle des équations locales 

Pour rendre ces équations plus simples et permettre de généraliser les résultats obtenus à tous les phénomènes 

similaires, nous allons introduire un ensemble des variables réduites (Tableau 1) pour aboutir une forme adimensionnelle 

exploitable. 
 

Fréquemment, les principales caractéristiques d'un écoulement peuvent être déterminées à l'aide des nombres sans 

dimension. Dans cette section, nous présentons les nombres sans dimensions que nous avons utilisés dans ce document. La 

majorité de ces nombres apparaît naturellement lors de l’adimensionnalisation. Ces nombres sont les suivants : 
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 Nombre de Reynolds : ce nombre définit le rapport entre les forces d'inertie (termes convectifs) et les forces de 

viscosité. De plus, le passage du régime laminaire au régime turbulent est souvent caractérisé par ce nombre 

[6]. 


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(13) 

 Nombre de Prandtl : il quantifie le rapport entre les transferts de la quantité de mouvement par les forces 

visqueuses et le transfert de chaleur par conductivité thermique [7].  


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Pr                                                                                (14) 

Tableau 1- Variables adimensionnelle des équations locales [6] 

Grandeur Temps Longueur Vitesse Pression  Température 

Échelle t  L  u  P  T  
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Le fluide caloporteur dans la canalisation de la dalle chauffante est considéré comme une eau chaude dont les propriétés 

thermiques sont les suivantes : 

 

Tableau 2- Propriétés thermiques de l’eau à 20°C et à pression constante [7] 

Cp  Chaleur spécifique )./(4182 KkgJ  

  Masse volumique 3
/1000 mKg  

  Vitesse moyenne du fluide en m/s )./(10
3

smkg


 

  Conductivité thermique )./(597.0 KmW  

 

5. Modélisation numérique  

Pour ce type de problème nous avons choisi la méthode des différences finies pour la résolution des équations de 

Navier-Stokes, régissant l’écoulement du fluide caloporteur dans les canalisations de la dalle chauffante. Ce choix est 

justifié par le fait que leur mise en œuvre est relativement facile et à leur préservation du caractère conservatif des 

équations sur chaque élément de contrôle. 

 
5.1. Maillage du domaine de fluide 

Au départ, nous allons chercher un moyen qui nous permettra de localiser spatialement et temporellement tous les 

points de la solution numérique en créant une grille de calcul. Dans la suite, le résonnement sera fait sur un espace plan 

(2D), alors que l’extension pour le 3D est faite d’une manière intuitive [8]. La figure 2 représente la procédure utilisée pour 

repérer les points du domaine étudié. 
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Fig.2. Eléments de maillage bidimensionnel du domaine de calcul en (i, j) [8]. 

5.2. Traitement numérique de l’écoulement dans la canalisation rectangulaire 

Dans cette étude, on considère un écoulement de fluide bidimensionnel dans une conduite de section rectangulaire. 

L’écoulement est supposé visqueux incompressible entre deux plaques de grande étendue, parallèles et séparées par une 

petite distance entre deux parois indéformables. Les deux plaques sont fixes et le fluide est mis en mouvement par un 

gradient de pression.  
 

Après la substitution par les variables adimensionnelles des équations locales (Voir Tableau 1), les équations (5), (7) et 

(8) deviendront : 
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Suivant la discrétisation par la méthode implicite des différences finies, on trouve [9, 10]: 
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 Pour la vitesse par rapport à la direction (Ox), nous avons opté pour le schéma arrière ; 
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 Pour la vitesse par rapport à la direction (Oy), nous avons opté pour le schéma centré ; 
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 Pour la vitesse d’ordre 2 par rapport à la direction (Oy), nous avons opté pour le schéma centré ; 
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Si on déduit les coefficients de la matrice de Gauss, on trouve les relations suivantes : 
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L’équation de la conservation de l’énergie dans le fluide caloporteur devient comme suit : 

2

2

.
Re.Pr

1

























y

T

y

T
v

x

T
u

t

T

                                                 

(25) 

De même, pour les coefficients de la matrice de Thomas, on trouve [9]: 
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Pour l’équation de la conservation de la masse, on trouve :  
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avec : 
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5.3.Organigramme de la modélisation numérique de l’écoulement du fluide 
 
 

 

La modélisation numérique de l’écoulement du fluide caloporteur dans la canalisation de la dalle en béton est basée sur 

les étapes suivantes : 
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 Dimensionnement de la canalisation du fluide. 

 Introduction des propriétés thermiques du fluide caloporteur. 

 Initialisation de toutes les variables du système à la température ambiante 25°C. 

 Résolution des équations de Navier-Stokes régissant ce type d’écoulement du fluide. 

 Test de convergence sur la vitesse moyenne et la température moyenne du fluide. 

 Test sur le domaine de calcul du fluide. 

 Test sur le temps global estimé pour calcul. 
 

La figure 3 illustre les démarches essentielles des différentes étapes de calcul pour la modélisation numérique de 

l’écoulement du fluide dans les tubes de la dalle en béton en utilisant le langage Fortran90. 

 

Fig. 3. Organigramme de la modélisation numérique de l’écoulement du fluide dans la canalisation étudiée  de la dalle du 
plancher chauffant. 

 
6. Résultats et discussions 

6.1. Analyse de l’écoulement du fluide dans la canalisation de la dalle en béton 
 

Les conditions aux limites de la chaine tubulaire de la dalle en béton sont : 

1. une température d’entrée du fluide égale à 60°C ; 

2. les conditions aux limites imposées aux frontières sont de type Dirichlet (une température sur les parois 

inférieure et supérieure égale à 60°C) ; 

3. la valeur de référence du nombre de Reynolds est de 500, donc le régime est laminaire ; 

4. un gradient de la température dans la sortie du canal. 
 

Les caractéristiques de la grille du calcul sont présentées dans le tableau 3. 
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Tableau 3- Caractéristiques de la grille du calcul dans la canalisation de la dalle

 

Canal 
Longueur 

L sur (Ox) 

Hauteur 

b sur (Oy) 
NI  NJ  x  y  

 1m 20.10-3m 101 41 10-2 5.10-4 

NI et NJ sont respectivement les indices des nœuds sur l’axe des abscisses et des ordonnées 

 

6.2. Effet de la variation du nombre de Reynolds sur la vitesse du fluide 

La figure 4 illustre les profils de la vitesse du fluide caloporteur dans le canal en fonction du pas d’espace. On peut 

remarquer que l’allure du profil de la vitesse du fluide dans la canalisation de la dalle chauffante est parabolique. En plus, 

elle garde la même forme pour toutes les valeurs du nombre de Reynolds (Re =50, 80, 150, 700, 800 et 900), mais il y a une  

différence relativement remarquable dans la vitesse maximale au centre du canal, qui est égale à 0.0025m/s pour Re = 50 et 

0.0325m/s pour Re = 900. Cette différence montre que l’influence de la variation du nombre de Reynolds sur l’écoulement 

du fluide est importante. En effet, quand on augmente la valeur de Reynolds, la vitesse augmente et vice-versa, ce qui 

explique que dans le cas des conduites en charge où l’écoulement est laminaire, seules les forces de viscosité qui 

interviennent. 
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Fig. 4. Profils de la vitesse du fluide caloporteur dans le canal en fonction du pas d’espace. 

 

6.3. Effet du positionnement du fluide sur la vitesse d’écoulement 

Il est à noter que les parois de la canalisation exercent des forces de frottement sur le fluide. Ainsi, au bout d’une 

longueur d’écoulement non négligeable, la vitesse prend un autre profil par rapport à l’entrée.  D’après la figure 5, on 

constate que pour une section déterminée, la vitesse du fluide n’est pas la même en fonction de la position du fluide dans la 

canalisation de la dalle.  En effet, pour un point situé au voisinage de l’entrée du canal Uf(5, Y), son profil de vitesse est 

totalement différent par rapport à un autre point situé par exemple au centre du canal Uf (55, Y). Ce qui explique le 

changement des profils de vitesses jusqu'à une vitesse nulle au niveau des parois (condition de non glissement) et une 

vitesse maximale au milieu du canal. 
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Fig. 5. Profils des vitesses du fluide caloporteur dans le canal pour différentes positions en fonction du pas d’espace. 

 
6.4. Effet du positionnement du fluide sur la température du fluide caloporteur 

La figure 6 présente l’évolution des profils de la température du fluide caloporteur au sein de la chaine tubulaire de la 

section rectangulaire en fonction du pas d’espace sur l’axe (Oy) pour différentes coordonnées cartésiennes du fluide. Il est 

bien observé dans cette figure que l’évolution de la température est notablement relative à la position du fluide dans la 

canalisation. C’est-à-dire, pour une position dans le canal loin de l’entrée du canal comme Tf (90, Y), la température du 

fluide augmente d’une manière significative. Par contre, pour une position plus proche à l’entrée du canal comme Tf (20, 

y), la température du fluide caloporteur est aux alentours de la température initiale (condition d’entre du fluide) et au même 

temps plus petite par rapport à celle de la position Tf (90, Y) dans la sortie du canal et vice-versa. 
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Fig.6. Evolution de la température du fluide dans la canalisation pour différentes positions en fonction du pas d’espace. 

 

6.5. Effet du positionnement du fluide sur la température du fluide caloporteur 

La figure 7 présente l’évolution du profil de la vitesse (v) du fluide dans la chaine tubulaire de la dalle du plancher 

chauffant en fonction du pas d’espace. On peut constater que cette représentation montre clairement la conservation 

d’énergie dans la canalisation qui est bien vérifiée au cours de l’écoulement interne. Cette conservation d’énergie est 

expliquée par la symétrie du profil par rapport au milieu de la canalisation rectangulaire, exactement dans le point (20, Y), 

ce qui est bien illustré dans cette figure. 
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Fig.7. Evolution du profil de la vitesse adimensionnelle (vf) du fluide dans la canalisation en fonction du pas d’espace. 

 

7. Conclusion 

Apres avoir passé en revue les principaux travaux relatifs au phénomène des transferts thermiques durant l’écoulement 

dans la canalisation de la dalle chauffante qui a été assimilée à une canalisation de section rectangulaire, nous avons abordé 

la modélisation numérique du système étudié. En effet, nous avons décomposé le domaine physique en deux sous 

domaines. Un canal horizontal de forme rectangulaire qui représente la chaine tubulaire du plancher chauffant où les 

équations régissant l’écoulement et le transfert  thermique sont les équations ordinaires de Navier-stocks et l’équation de 

conservation d’énergie. Par la suite, nous avons étudié l’effet de la variation du nombre de Reynolds et la position du fluide 

dans la canalisation sur l’évolution de la vitesse et la température du fluide caloporteur. Concernant la sensibilité au nombre 

de Reynolds, les résultats ont montré que cette variation a une influence remarquable sur l’évolution de la vitesse le long de 

la canalisation. De plus, les résultats  de  l’influence de la variation du positionnement du fluide au sein de la canalisation 

sur l’évolution de la température du fluide ont montré que cette variation a une influence sur la température et compris la 

vitesse. 

Finalement, on conclut que l’utilisation de la méthode de différences finies pour la modélisation d’écoulement du fluide 

caloporteur dans une dalle chauffante destinée au chauffage par le sol est très efficace pour l’analyse des besoins 

énergétiques en chauffage et rafraichissement des bâtiments. Cette méthode permet le dimensionnement des installations de 

chauffage. 

 

8. Nomenclatures 

  Diffusivité thermique  sm .
2

 
0

P  Pression initiale Pas 

  Masse volumique  
3

/ mkg  
0

T  Température initiale °C 

  Conductivité thermique  
KmW ./

 
x  Variable dimensionnel  de l’axe (Ox) - 

b  Hauteur du canal m y  Variable dimensionnel  de l’axe (Oy) - 

Cp  Chaleur spécifique 
KkgJ ./

 
z  Variable dimensionnel  de l’axe (Oz) - 

h
D  Diamètre hydraulique du canal 

2
m  t  Temps dimensionnel s 
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L  Longueur du canal m w  Variable dimensionnel  sur l’axe (Oz) - 

P  Pression dimensionnel du fluide Pas U  Vitesse dimensionnelle  sur  l’axe (Ox) sm /  

Temps  Temps du calcul s v  Vitesse dimensionnelle  sur  l’axe (Oy) sm /  

0
U  Vitesse adimensionnelle  du fluide  sm /  T  Température dimensionnelle °C 

y  Pas d’espace sur le l’axe (Oy) m NI  
Nombre totale des nœuds sur le l’axe 

(Oy) 
- 

NJ  Nombre totale des nœuds sur le l’axe (Ox) - 
f

U  Vitesse dimensionnelle  du fluide de l’axe  sm /  

f
T  Température dimensionnelle du fluide   °C   Viscosité dynamique du fluide  

smKg ./

 

Pr  Nombre adimensionnel de Prandtl - Re  Nombre adimensionnel de Reynolds - 

i  Indice des nœuds sur le l’axe (Ox) - j  Indice des nœuds sur le l’axe (Oy) - 

TempsG  Temps global du calcul s *t  Temps adimensionnel - 

*x  Variable adimensionnel  de l’axe (Ox) - *y  Variable adimensionnel  de l’axe (Oy) - 

*P  Pression adimensionnel du fluide - *T  Température adimensionnelle du fluide   - 

*U  Vitesse adimensionnelle  sur  l’axe (Ox) - *v  Vitesse adimensionnelle  sur  l’axe (Ox) - 

t  Pas du temps s x  Pas d’espace sur le l’axe (Ox) m 
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