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RESUME 

Tout l’intérêt des évacuateurs de crues en marches d’escalier réside dans le 

fait qu’ils favorisent la dissipation de l’énergie et provoquent l’aération de 

l’écoulement beaucoup plus tôt que les évacuateurs de crues à profils lisses. 

Sur chacune des marches de l’ouvrage, l’eau forme un rouleau de recirculation à 

axe horizontal qui provoque la dissipation d’une partie de l’énergie. La turbulence 

de l’écoulement est pratiquement concentrée dans la couche limite de sorte que 

l’aération naturelle ne commence qu’à partir de l’endroit où cette couche atteint la 

surface libre de l’eau. 

Dans ce papier, nous présentons une modélisation numérique de l’évolution de la 

couche limite qui se développe dans la partie amont du coursier. L’écoulement 

décrit peut être assimiler à celui d’un fluide visqueux incompressible et turbulent 

se produisant à travers un canal à forte pente très rugueux. Nous nous sommes 

basés sur les équations générales de Reynolds régissant les écoulements turbulents 

et qui constituent un système d’équations ouvert. Ce dernier est fermé en lui 

associant le modèle de turbulence k- composé de deux équations de transport. 

La résolution du modèle associé aux conditions aux frontières est menée par la 

méthode des différences finies suivant des schémas numériques appropriés. 

 

Mots clés : évacuateur en marches d’escalier,  aération naturelle,  couche limite,  

turbulence 
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Notations 
 b :  Largeur du canal   Rh :  Rayon hydraulique   

 C :  Coefficient de Chezy   Ul :  Vitesse de l'écoulement libre  

 Cf :  Coefficient de frottement   U* :  Vitesse de frottement   

 C :  Constantes du modèle de turbulence  Yc,  :  Epaisseur de la couche limite  

 C :  Constante du modèle de turbulence    :  Angle d'inclinaison du canal   

 f :  Coefficient de frottement de Darcy      :  Epaisseur de la couche limite  

 h :  Hauteur d'une marche     :  Dissipation de l'énergie turbulente 

 hc :  Hauteur d'eau critique    :  Constante de Von Karman 

 Hd :  Hauteur d'eau à l'amont d'un déversoir      :  Viscosité dynamique    

 he :  Hauteur de l'écoulement    t :  Viscosité turbulente    

 hn :  Hauteur normale de l'écoulement      :  Viscosité cinématique    

 k :  Energie cinétique turbulente    k, :  Constante de Prandtl 

 ks :  Rugosité équivalente     :  Fonction de courant  

 Ks :  Coefficient de Strickler     :  Fonction de courant addimensionnelle   

m  :  Taux de transfert de masse    

INTRODUCTION 
Jusqu’à une époque très récente, la majorité des coursiers d’évacuateurs de 

crues  présentaient des profils lisses et toute l’énergie de l’écoulement devait être 

dissipée à l’aval, au niveau des bassins de dissipation. L'apparition récente de 

techniques de construction évoluées, notamment, le B.C.R, a donné naissance à 

une nouvelle conception qui consiste à disposer lea fond du coursier en marches 

d'escalier.  

A la différence des dispositifs classiques d’évacuation des eaux, les évacuateurs 

de crues en marches d'escalier sont destinés à faire déverser des débits d’eau 

importants tout en contribuant à atténuer considérablement l’énergie de 

l’écoulement. Des études ont mis en exergue l'apparition sur les coursiers d'une 

eau aérée à une certaine distance du seuil. L’avantage principal de la présence de 

l’air dans les écoulements à grandes vitesses est qu’il permet de prévenir ou à 

défaut réduire les dommages d’érosions causés par le phénomène de cavitation 

[9]. De même, certains travaux ont montré, de manière générale,  qu'un fond 

rugueux provoque une aération plus importante. 

Dans ce contexte, l’objectif principal qu’on s’est assigné est de simuler 

numériquement l’écoulement dans la couche limite qui se développe dans la zone 

supérieure du coursier en vue de localiser l’apparition du phénomène d’aération 

naturelle de l’écoulement dans les deux cas d’évacuateurs, en marches d’escalier 
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et à profils lisses. Les résultats de calculs vont nous permettre de voir  l'effet des 

éléments rugueux en marches d'escalier sur  l’auto-aération des écoulements à 

travers les canaux à fortes pentes.  
 

1. ECOULEMENTS SUR LES CANAUX A MARCHES  
Suivant les conditions d’écoulement et des considérations pratiques, deux 

types d’écoulements peuvent avoir lieu sur les évacuateurs de crues en marches 

d'escalier [3]. Il s’agit de l’écoulement en nappe et l’écoulement très turbulent. 

L’écoulement en nappe est défini comme une succession de nappes en chutes 

libres, tel que l’eau bandit d’une marche à une autre d’une manière identique. Par 

contre, dans l’écoulement turbulent l’eau coule en un courant fort, cohérent au-

dessus des marches ; on ne distingue plus la lame d’eau déversante et les marches 

sont totalement immergées. Les bords extrêmes des marches forment ainsi une 

pseudo-base au-dessous de laquelle se développent des rouleaux de re-

circulations. Ces derniers sont maintenus par la transmission des contraintes de 

cisaillement du fluide. 

Les conditions d'aération de la surface libre sont très souvent satisfaites et de 

grandes quantités d’air sont entraînées le long du canal. Le phénomène de 

turbulence est généré au voisinage de la couche limite qui se développe à partir du 

seuil du déversoir. Au moment ou elle atteint la surface libre au point d’inception, 

la turbulence provoque l’aération de l'écoulement. 
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2.  LA  MODELISATION  MATHEMATIQUE 

2.1  Les équations générales 

L’écoulement dans la couche limite que l’on se propose d’étudier peut être 

assimilé à celui d'un fluide visqueux incompressible et turbulent se produisant à 

travers un canal  rugueux à forte pente. La modélisation mathématique suppose 

l’édification d’un système d’équations différentielles régissant notre écoulement 

en se basant sur les équations générales des écoulements turbulents suivantes 

[1,2] :  

   L’équation de continuité 
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   Les équations dynamiques (équations de Reynolds) 
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.     

   , est l’opérateur Laplacien, appliqué aux composantes du vecteur vitesse, on 

aura : 
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2.2  Les hypothèses de base  

  Pour le besoin de l’étude, on admet  que le  coursier  est  suffisamment large (h     

5b selon Graf [4]) pour traiter le problème sur deux dimensions  spatiales 

seulement. 

   L’écoulement  est  supposé permanent et incompressible  

  Concernant les forces de volume, on ne tient compte que des forces 

gravitationnelles.  

 



41 

 

En tenant compte des hypothèses, les équations de l’écoulement peuvent s’écrire 

comme suit : 
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2.3  Le modèle de turbulence  

Le modèle mathématique (3) est un système ouvert comportant plus d’inconnues 

que d’équations. Pour le fermer nous avons utilisé le modèle k-,  composé de 

deux équations de transports, à savoir [6,7,17] : 

 

  L’équation de transport de l’énergie cinétique turbulente, définie comme suit : 
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  L’équation de transport de la dissipation de l’énergie cinétique turbulente : 
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2.4  Le modèle mathématique de l’écoulement  

En outre des hypothèses déjà introduites, la comparaison entre les ordres de 

grandeur des paramètres de l’écoulement peut conduire à la négligence de certains 

termes du système d’équations  (3) [10, 11, 24] : 

Le modèle mathématique final régissant l’écoulement dans la couche limite,  peut  

être exprimé selon le système d’équations suivant : 
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 avec,     
y

u1
vu t
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NB : afin de simplifier les notations, nous avons écrit les variables sans le 

symbole ‘barre’.  

 

Concernant les constantes numériques du système d’équations. On adopte, 

généralement, les valeurs universelles recommandées par Lauder et al [8,17] : 

C = 0.09      ;     
1

C =1.43     ;     
2

C = 1.92    ;    k  = 1.0   ;    =1.30 

 

3. LA  MODELISATION  NUMERIQUE 

Différentes méthodes numériques existent pour résoudre les systèmes 

d'équations différentielles partielles. Les procédures de résolution en différences 

finies que nous avons utilisé s’adaptent, généralement,  bien aux écoulements à 

surfaces libres. 

 

3.1 Transformation de variables  

L’utilisation de la méthode des différences finies nous impose d’opérer 

une transformation de variables pour passer du domaine de l’écoulement  

physique irrégulier à un domaine  de calcul régulier. Après le développement des 

équations, les transformations de Von Mises, nous permettent d'écrire le système 

d'équations  sous la forme suivante [15] : 
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                 avec,       
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  est la fonction de courant adimensionnelle définie comme suit  :           
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avec,     E ,  la fonction de courant au bord supérieur de la couche limite ; 

             I  ,  la fonction de courant au niveau de  la pseudo-base. 

 

Au niveau de la pseudo-base, on considère que le taux de transfert de masse est 

nul. En exprimant les constantes  
S   dans le système  (x, )  et en prenant :  
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 On obtient le système d’équations de transport suivant :  
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3.2  Profils initiaux des  variables de l'écoulement  

 Le profil de distribution de la vitesse dans la couche limite est représenté par la 

loi de puissance suivante proposée par Chen :         
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où : f8kn    est le facteur de puissance dont  la constante de Von Karman  = 

0.41.        

 
 
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Pour le calcul du coefficient de frottement dans le cas des évacuateurs en marches 

d'escalier, Rajaratnam [12] propose la formule suivante : 

        
2

3

n

q

sin . g . h . 8
f


                                                    (10) 

 La distribution de l’énergie cinétique turbulente k est déduite à partir des 

résultats expérimentaux de Klebnoff [8] :

2

2

l

y
  08.008.0 Uk 










        (11)                                 

 Quant au profil initial du taux de dissipation de l'énergie cinétique turbulente il 

est obtenu, des expressions de la viscosité turbulente définies ainsi :   

   


 

2

t

k
.C.      et      l.k. 2/1

t   

La longueur de mélange de l, est déterminée selon Schlichting [16] comme suit : 

   
42.0

09.0      y


      y  42.0l            
42.0

09.0      y


                   09.0l  

 

3.3  Les conditions aux limites 

IL  y a lieu de distinguer entre deux types de conditions aux limites, celles qui 

caractérisent  le fond du canal et celles de l'écoulement potentiel (libre).   

L 'écoulement libre  

Selon Keller [6], la vitesse libre de l'écoulement répond à l'équation suivante : 

                     



sing)

x

U
(U l

l                                                   (12) 

L'énergie cinétique turbulente  k  et le taux de dissipation de l'énergie cinétique 

turbulente,  sont considérés nuls le long de la frontière supérieure de la couche 

limite. 

 

Le fond du canal  

Le modèle mathématique adopté  pour l'écoulement, ne s'applique qu'au 

domaine où le nombre de Reynolds est élevé. A proximité du fond cette approche 

n'est pas valable. Pour surmonter cette irrégularité, nous devons faire appelle à 

d'autres lois régissant cette zone.  
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  Dans la zone logarithmique de la couche limite la loi de vitesse est dénommée 

loi de la paroi. Le transport turbulent y est prépondérant devant le transport 

moléculaire. 

Lorsque la paroi est rugueuse (ks > 70), Ryhming [13] propose l'expression 

suivante : 

           5.8
k

y
 Ln.54.2u

S









                                                  (13) 

 Pour les variables k et ,  Kim [5] et Sajjadi [14], voir aussi Violet et col [20], 

ont proposé les expressions suivantes : 

              



C

U
k

2

*                       (14)                

          
y.

k.C 2/34/3





                               (15)         

 

4. VALIDATIONS  DES  MODELES  NUMERIQUES 
Pour valider nos modèles, nous disposons d’une part des résultats de 

Keller et Rastogi [6,7] obtenus par l’application d’un modèle numérique à 

’évacuateur de crues à profil lisse du barrage de Glenmaggie et d’autre part, nous 

disposons des mesures de Vercheval [19] relevées sur le modèle physique de 

l’évacuateur du barrage de M’bali. 

Les figures 3 et 5 reportent les positions du point d’inception en fonction du débit, 

donnés respectivement, pour un coursier lisse et un coursier en marches d’escalier. 

La figure 3 regroupe les résultats offerts par le modèle mathématique de Keller et 

ceux obtenus de l’application du modèle basé sur le schéma numérique implicite 

au coursier du même barrage. La comparaison entre les résultats montre une 

concordance satisfaisante.     Cependant, l’exécution du programme du modèle 

basé sur le schéma explicite a enregistré des divergences rapides pour tous les 

débits testés. Il y a lieu, de conclure alors, que dans le cas  

des évacuateurs lisses, seul le modèle basé sur le schéma implicite est valide. 

 u/U* 
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Fig. 3  Comparaison des résultats numériques de Keller à ceux du schéma 

implicite de notre modèle (cas de l'évacuateur de crues lisse du barrage de 

Glenmaggie) 

 

 

 
 

5

10

15

20

25

30

35

40

10 15 20 25 30 35

D
éb

it
  
q
  
[m

2
/s

] 

Longueur  LI [m] 

Vercheval

Modéle (implicite)

Modéle (explicite)

Fig. 4  Comparaison des résultats experimentaux de Vercheval à ceux  des 



47 

 

La figure 5 présente, quant à elle, des graphiques résultant des modèles 

basé sur les deux schémas, implicite et explicite, appliqués au coursier à marches 

du barrage de  M’Bali ainsi que  le  graphique des mesures expérimentales 

relevées par Vercheval sur le modèle réduit de l’évacuateur de crues du même 

barrage.   

Vu le très bon rapprochement obtenu entre l’allure des résultats de  Vercheval et 

les allures  données par les modèles numériques qui sont pratiquement confondus, 

nous pouvons affirmer la validité des deux programmes de calcul dans le cas des 

évacuateurs de crues à marches.  

 

 

5.  APPLICATIONS 

5.1  Effet des marches sur l’apparition de l’aération naturelle  

Les résultats de l’applications les modèle numérique à l’évacuateur du 

barrage de M’Bali, sont illustrés  sur la figure 6. Cette dernière  donne les 

différentes positions du point d’inception en fonction du débit pour un fond de 

coursier lisse et pour un fond en marches d’escalier. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L’analyse des résultats nous permet d’affirmer que la zone de l’écoulement aéré 

apparaît nettement plus rapprochée du seuil du coursier  dans le cas d’un 

évacuateur en marches d’escalier que dans le cas d’un évacuateur à profil lisse  
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5.2 Influence  du débit et de la pente sur le développement de la  couche 

limite  

 

 

Fig. 6  Influence du débit sur l'évolution de la couche limite (cas de 

l'évacuateur à marches du barrage de M'Bali). 

 

La figure 6  regroupe une série de graphes qui illustrent l’évolution de la 
couche limite le long du coursier, résultant de l’application du  modèle  au 
coursier de  l’évacuateur de crues à marches du barrage de M’Bali. Les graphes 
mettent en évidence l’influence du débit sur le développement de la couche limite. 
On observe bien l’accroissement de l’épaisseur de la couche limite 
proportionnellement à l’augmentation du débit. 

De même les graphiques des résultats reportés sur la figure 7 montrent bien 
l'effet important du changement de pente d'un évacuateur. En fait, on constate que 
le point de début de l’aération naturelle de l’écoulement  s’éloigne vers l’aval du 
seuil du coursier au fur et à mesure que l’on  diminue la pente de celui-ci. Cette 
tendance semble s’accentuée en adoucissons la pente avec des proportions de plus 
en plus importantes 
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Fig. 7  Influence de la pente du coursier sur l'apparition de l'aération de  

         l'écoulement (cas de l'évacuateur à marches du barrage de 

M'Bali) 
 

CONCLUSION 
Le travail entrepris a cerné des aspects d'un problème d'actualité en 

l'occurrence, la simulation numérique de l'évolution de la couche limite et la 
localisation du phénomène d'aération naturelle des écoulements dans les 
évacuateurs de crues en marches d'escalier.  

Au vu des résultats, il ressort que les évacuateurs de crues en marches 
d'escalier agissent très favorablement sur l'aération naturelle de l'écoulement. Les 
graphiques illustrent bien que l'écoulement aéré se rapproche nettement plus du 
seuil de l’évacuateur de crues  dans le cas des  coursiers en  marches d’escalier  
que dans le cas des coursiers à profils lisses. Ceci explique clairement que la 
macro-rugosité constituée dans notre cas par des éléments en marches d’escalier 
accélère le processus de l’aération naturelle de l’écoulement. Le phénomène 
s'explique par l’accroissement plus rapide de la couche limite qui se développe à 
partir du seuil pour atteindre la surface libre à l’endroit où l’aération de 
l'écoulement est enclenchée.   

L’influence du débit de l’écoulement et du changement de pente sur le 
développement de la couche limite, ont été mis  en évidence par d’autres 
expérimentations. 
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