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Résumé :

Ce papier présente une méthode de prévision d’une série
chronologique basé sur un modéle a mémoire longue a savoir le
processus autorégressif- moyenne mobile fractionnairementintégré
(noté ARFIMA par la suite). Le paramétre d’intégration fractionnaire
dans le modele ARFIMA est estimé par une méthode semi-
paramétrique de Geweke Porter-Hudak (GPH par la suite). Nous
essayons de déterminer les différents facteurs influant sur I’estimation
par GPH du paramétre d’intégration fractionnaire (d) des séries
simulées par la méthode de Monte Carlo, puis on utilise cette méthode
d’estimation pour prédire la série temporelle de température de 1’aire
de la ville d’Alger.

Mots clés : mémoire longue, ARFIMA, GPH, prévision, température
de I’aire.

Introduction :

Une grande partie d'analyse des séries chronologiques considére le
cas ou l'ordre d’intégration, d, est un entier. Si une série est intégrée
d’ordre un ou plus, cette série n’est pas stationnaire, et sa fonction
d’autocorrélation (ACF) diminue linéairement. Et si elle est intégrée
d’ordre zéro, son ACF montre une décroissance exponentielle.Donc,
on peutdire que des observations séparées par une longue période sont
indépendantes. Beaucoup de travaux ont discuté l'analyse d'un tel
comportement dans des détails considérables. Néanmoins, beaucoup
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de séries chronologiques empiriquement observées, semble étre
stationnaire (méme apres certaine différenciation), montre une
dépendance entre les observations éloignées qui(bien que petite) est
nullement négligeable.Ces séries se caractérisent par une fonction
d’autocorrélation qui décroit hyperboliquement. Ce type de
comportement est appelé mémoire longue. Ce phénomene est apparu
dans les années 1895 a partir des observations de 1’astronome New
Comb puis du chimiste Student (1927). Le domaine qui a été tres
certainement a 1’origine de 1’essor des modéeles a mémoire longue est
I’hydrologie, avec les travaux fondateurs de Hurst (1951) sur les crues
du Nil. Ses travaux ont montré que certaines séries présente une
structure de corrélation particuliére (mémoire longue), et il a introduit
un outil statistique qui permet de détecter la mémoire longue dans une
série chronologique et qui porte son nom : exposant de Hurst noté H.

Ces travaux ont été suivis et approfondi par d’autres chercheurs qui
ont ¢élaboré d’autres modeles qui caractérisent ce phénomeéne, comme
les processus auto-similaire (self-similar) ainsi que des processus de
séries temporelles ont été deéveloppés afin de rendre compte des
propriétés atypiques de la fonction d’autocorrélation et de la densité
spectrale. Ces processus, appelées  ARFIMA (Auto-
regressiveFractionallyltegratedMovingAverage) ; ont été introduits
pour la premiére fois par Granger et Joyeux (1980). Ces processus
constituent un prolongement des modeles ARIMA, dans lesquels le
coefficient d’intégration prend des valeurs réelles (d €R), on I’appelle
le coefficient d’intégration fractionnaire. Les propriétés statistiques de
ces processus ont fait 1’objet de plusieurs recherches (Granger et
Joyeux (1980) et Hosking (1981)) et elles sont maintenant bien
connues.

Dans notre travail on commence de présenter une définition de la
notion de mémoire longue ainsi que la définition, les propriétés et la
méthode d’estimation de Geweke Porter-Hudak (GPH par la suite) du
processus ARFIMA. Puis on effectuera une application théorique de la
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méthode d’estimation GPH basé sur des simulations de Monté Carlo,
puis on consacre la derniére partie a 1’application de la méthode
d’estimation proposée sur la série journaliere de température de 1’aire
dans la ville d’Alger de I’année 2012.

1. Les processus a mémoire longue :

1.1 Définition des processus & mémoire longue :
Les processus a mémoire longue peuvent étre définis de facon
équivalente dans le domaine spectral et le domaine temporel.

1.1.1 Dans le domaine fréquentiel :
Les processus & mémoire longue sont caractérisés par une densité
spectrale s’accroissant sans limite quand la fréquence tend vers
zéro.
Définition :
Un processus stationnaire {X;},c; est un Processus a mémoire
longue s’il existe un nombre réel 3,0 < 3 < 1 et une constante c',
c' > 0 vérifiant :

f(A)
AS0 CIF

1 (1.1)
f(A) : la densité spectrale du processus {X, };cz a la fréquence A

On en déduit immédiatement quef(A) ~ ¢' | A /°P, quandk — 0. Ainsi la
densité spectrale exhibe un pdle a la fréquence zéro, contrairement a la
densité spectrale des processus a mémoire courte qui est finie et
positive aux basses fréquences.

1.1.2 Dans le domaine temporel
Les processus a mémoire longue sont caractérisés par une fonction
d’autocorrélation décroissante hyperboliqguement au fur et a
mesure que le retard s’accroit, a 1’encontre des processus a
mémoire courte ou elle décroit exponentiellement.

Définition :
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Un processus stationnaire {X},c; est un Processus a mémoire
longue s’il existe un nombre réel o, 0 < a < 1let une constante c,
¢ > 0 vérifiant :

k

Ou p est la fonction d’autocorrélation et k le retard.

Par conséquent, les autocorrélations d’un processus a mémoire longue
veérifient la relation asymptotique suivante :p~c k™“quand ¢ — o, ou
ceERtet0<a< 1.

1.2 Etude des processus ARIMA fractionnaire :
Dans le domaine des méthodes d'analyse des séries temporelles, il
arrive souvent qu’on modélise des séries & mémoire longue au moyen
de processus a mémoire courte tels que les modeles ARMA. Ceci
revient alors a approximer la fonction d'autocorrélation qui décroit
hyperboliqguement au moyen d'une somme d'exponentielles. Méme si
une telle procédure est toujours possible, elle ne conduit pas a un
modéle parcimonieux puisqu'il est nécessaire de considérer des retards
tres élevés dans la modélisation ARMA. Cette difficulté peut étre
résolue grdce a lintroduction des processus ARFIMA
(AutoregressiveFractionnallyintegratedMovingAverage) dont  la
caractéristique essentielle est la présence d'un parametre d'intégration
fractionnaire prenant explicitement en compte le comportement de
long terme de la série.

Définition :
Un processus {X;}iez suit un processus ARFIMA (p,d,q) s’il satisfait
I’équation suivante:

®(B)(1 — B)!X,
= 0(B)s, (1.3)
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Ou ¢, est un bruit blanc de variance o2, ®(B) et ©(B) sont deux
polyndmes caractéristiques d’ordre p et q respectivementdont les
racines sont a I'extérieur du disque unité, et d € R.

(1 — B)Yest appelé opérateur (Filtre) de différence fractionnaire.
(1 — B)dest le développement binomiale défini par:
d1-d) _, dd-d)@2-d) ,
T 3! BT -
B I'k—d)
~ LT(Dr +j)
]:

1-B)¥=A"=1-dB-

+o0

Ou T'(.) : correspond a la fonction Gamma.

On remarquera que les processus ARMA et ARIMA sont des cas
particuliers des processus ARFIMA dans lesquels, respectivement
d = 0 et dest un entier.
Propriétés :
Le processus ARFIMA le plus simple est le bruit fractionnaire, ou
ARFIMA(0,d,0):

(1-B)!X, = & (1.4)

Les principales propriétés de ce processus sont données par:

a) Lorsqued < % {X}iez€St Un processus stationnaire et possede

une représentation moyenne mobile infinie.
-1 . .
b) Lorsqued > - {X.};ez€St un processus inversible et a une

représentation auto- régressive infinie.
1 . .
c) Lorsqued = -, {X, }tez€St un processus non stationnaire.

1 1 . . . .
Lorsque—> < d <, le processus est stationnaire et inversible. La

décroissance hyperbolique de la fonction d'auto corrélation indique
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que les processus ARFIMA sont des processus a mémoire longue
lorsque d est différent de zéro. En outre, le comportement de la densité
spectrale aux basses fréquences montre que, lorsque d est positif,
{X, };ez€St Un processus persistant.

On peut alors établir une classification des séries temporelles d’apres
les résultats du théoréme précédent en fonction des valeurs du
paramétre d'intégration fractionnaire d:

- si d =0, le processus ARFIMA (p,0,q) se réduit au processus
ARMA standard et exhibe uniquement une mémoire de court terme
(ne présente aucune structure de dépendance a long terme.

- Si O<d<%le processus ARFIMA est un processus

asymptotiquement  stationnaire @  mémoire  longue.  Les
autocorrélations sont positives et diminuent hyperboliqguement vers
zéro lorsque le retard augmente. La densité spectrale est concentrée
autour des faible fréquences (cycles lents), elle tend vers l'infini
lorsque la fréquence tend vers zéro. On est face a un processus
persistant.

. 1 . . ; .
- Si —- <'d < 0le processus est anti-persistant, les autocorrélations

alternent de signe et la densité spectrale est dominée par des
composantes de haute fréquence (la densité spectrale tend vers zéro
lorsque la fréquence tend vers zéro).

2. Estimation par la méthode de Geweke Porter-Hudak (1983)

Cette méthode est I'une des méthodes d’estimation semi-paramétrique
du parametre d’intégration fractionnaire  dd'un  processus
ARFIMA(p,d,q). Dans la suite, nous présentons cette méthode dite
aussi log-périodogramme proposée par Geweke et Porter-Hudak
(1983).
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Principe de la méthode :

D'une maniere genérale, on considere un processus scalaire, (X;):ez,
faiblement

stationnaire, dont la densité spectrale est de la forme suivante sur
l'intervalle [0,2n][:

A —2d
FOO) = ’2 sin (E) £ 2.1)
ou
e[
fr(A) = 2 b(e D2 (2.2)

N \ L . . 11
ou d est le parametre de mémoire compris dans l'intervalle (—5,5) et

f* est une fonction continue bornée sur tout l'intervalle [0.2x[. le
parametre d contrble le comportement de la densité spectrale dans un
voisinage de zéro alors que f* contrdle le comportement de courte
mémoire.

En calculant I'équation (2.1) aux fréquences de Fourier : 4; = 2m; /N,

pourj =0,..,N — 1, ou N est la taille de I'échantillon, et par passage
aux logarithmes, on obtient alors:

~ (4 , (%)
log IN(/'lj) = —2dlog |2 sin <?>‘ +log f*(0) + log 70)
In(%)
l 2.3
+log ) (2.3)
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Ou Iy(4) est le périodogramme (I'estimateur asymptotiquement sans
biais de la densité spectrale (1)) calculé a la fréquence 4;, défini par
I'expression:

W) = | e,

— Xn) (2.4)

On considére alors I'équation (2.3) lorsque T tend vers l'infini, j étant
fixé.

L'estimateur GPH nécessite a ce niveau deux hypotheses cruciales,
relatives au comportement asymptotique des éléments de I'équation
(2.3).

(H1) : pour des fréquences suffisamment basses (4 — 0) le terme

log];(( )) est négligeable.

(H2) : la suite des termes log }V((l )) pour j =1,..,m est

asymptotiquement indépendante et identiquement distribuée (i.i.d) ; le
nombre m de fréquences considérées est alors appelé la largeur de
bande.

Sous les hypothéses (H1) et (H2), I’estimateur GPH du paramétre de
mémoire d, noté dng, s’obtient alors en considérant la régression
linéaire simple, pourj = 1,...,m

log IN(/lj) =a+pZ
+ & (2.5)

Ou

o a=logf'(0) -y
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o Z;=-2dlog |2 sin (%’)|

_ In(4))
* 5 =log gy

L’estimateur GPH est alors explicitement défini par 1’égalité
suivante :

dGPH

71(Z = Z)log Iy(X) (2.6)

}n=1(Zj - Z_)Z

Geweke et Porter-Hudak(1983) montrent que, quand -1/2 < d < 1/2
, la loi de I'estimateur, d;py, de d tend vers une loi normale lorsque

N - oo

depy~N (d, T2 [6 Z}r_n:l(zj —-7) Zr>

En suivant les suggestions de GPH (1983), le nombre de fréquence m
est choisie de telle maniére que m= N* , avec u = 0.5,0.6, 0.7.

3. Expériences de simulation :

Dans le présent paragraphe, on effectuera une étude pratique des
méthodes d'estimation de la mémoire longue a partir des simulations
de Monté Carlo. On étudiera la technique de Geweke et Porter-Hudak
en procédant au calcul de I'estimateur dgpy  pour plusieurs valeurs
du nombre de fréquences m (m=T #u=0.4, 0.5, 0.6, sachant que T est
la taille de I'échantillon), effectué par des simulations des differents
processus ARFIMA. Tout dabord on s'intéressera au cas
ARFIMA(0,d,0) avec absence de mémoire courte, on effectue des
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simulations a ces processus pour plusieurs valeurs de d ( 0.45, 0.30,
...). On estime ces mode¢les et on calculera le biais, puis on procédera
au test du coefficient d'intégration. Cette étape sera reproduite sur des
processus mixte (présence de meémoire courte), on s'intéresse aux
simulations des  processus  autorégressifs fractionnaires
ARFIMA(1,d,0). Tous les résultats de simulation sont présentés dans
des tableaux. Et aprés chaque simulation, les résultats seront
interprétés.

3.1. Les hypotheses de travail:

Les simulations des processus a mémoire longue ARFIMA(0,d,0) et
ARFIMA(0,d,1) sont faites a l'aide du package fracdiff du logiciel
statistique R 2.6.1.

Les simulations de ces processus reposent sur certaines conditions et
hypotheses:

1. Pour chague expérience, différentes tailles d'échantillons
ont été retenues: Petite (n = 100), moyenne (n = 500) et
large (n = 750, n = 1500)

2. lavariance de d;py, peut &tre écrite par la formule:

2
var(ci ) - +o i avec m=N#, pu
CPHJ ™ 24m m ’

=0.4,0.5,0.6
Elle dépend de la taille de I'échantillon et du nombre de
fréquences. Par exemple pour toutes les séries de taille
300, et pour p=0.5 la variance var(&GpH) ~ 0.0237et
pour celles dont la taille est n=1500 la var(dgpy) =
0.0106.
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3. Pour chaque cas, les résultats sont résumés dans des

tableaux, ou on trouve les vraies valeurs de d,de ¢, et de
B(les coefficients autorégressifs et moyennes mobiles
respectivement), la valeur estimée d.py, la différence
(vrai valeur — la valeur estimée) qui représente le biais
moyen.

3.2. Les resultats des simulations par I'approche GPH:

a. Les processus ARFIMA(0,d,0):

Dans ce paragraphe, nous allons présenter les simulations réalisées sur
des modeles de type ARFIMA pur: (1 — B)%Y, = &, ces modéles
different selon plusieurs critéres, a savoir la taille de I'échantillon, la
valeur du parametre d'intégration fractionnaire et la puissance utilisée
pour déterminer le nombre de fréquences qui sont utilisées dans la
régression qui permet d'estimer dgpy .

Les résultats de simulations dans le cadre de detection d'une mémoire
longue dans les processus fractionnaires purs sont regroupés dans le
tableau suivant.

D'aprés letableau de simulation n° 01, on voit bien que les estimateurs
sont tres proches des vraies valeurs pour toutes les tailles choisies. Et
I'écart entre la valeur estimée et la vraie valeur ne dépasse pas 0.047,
malgré les changements faites sur la taille d'échantillon et sur le
nombre de fréquences m.
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d- 045 03 02 045
Vol w=1 04 05 06 04 05 06 | 04 05 06| 04 05 06
- Qo | 0489 0459 0464 | 0319 0317 0302 | -0.176 -0.189 -0.198 | -0381 -0414 -0.469
U biais | 0039 0009 0014 | 0019 0,017 0,002 | 0024 0011 0002 | 0,069 0,03 0019
- Qe | 0473 0468 0476 | 0279 0295 0286 | 0,199 0186 -0.198 | -0419 0435 -0.468
T biais | 0023 0018 0026 | 0021 0005 0014 | 0001 0014 0002 | -0031 0015 0018
" Qe | 0388 0461 0470 | 0250 0301 0295 | -0233 0169 0191 | 0375 0448 -0467

biais | 0066 -0014 -0020 | 0,050 0001 0,006 | 0033 -0.031 -0.009 | 0,075 0,002 0017
- Gy | 0442 0464 0462 | 0261 0040 0261 | -0,155 0172 0189 | 0449 0439 -0473

biais | 0008 0014 -0012 | 0,039 0260 0,039 | -0,047 -0.028 0011 | 0,001 0011 0023

O0T=N
IE]
O0E=N
OLL=N
il
O5I=N
uo||iu
e3P
s3||1ey
sju
24341p
53
Anad
oo
[HIEE -4
sh
ss@a04d
sap uao)
BRI
Tan
ea|gel

On conclut que le biais de I'estimateur dgpy dans le cas des processus
ARFIMA(0,d,0) est toujours petit, et I'estimateur d;py dans ce cas ne
dépend ni de la taille d'échantillon, ni du nombre de fréquences
utilisées.

b. Présence d'une mémoire courte:

Dans le paragraphe préceédent, dans le traitement des processus
fractionnaires purs ARFIMA(0,d,0) on s'est intéressé a l'effet de la
taille et a l'effet de nombre des fréquences sur la précision de
l'estimateur dgpy, de ce fait tous les cas cités avant (plusieurs taille et
plusieurs nombres de fréquence) ont été traites.

Dans ce paragraphe, on va essayer d'étudier la robustesse de la
méthode d'estimation de Geweke et Porter-Hudak sur les processus
ARIMA fractionnaires avec une présence de mémoire courte, on
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s'intéresse aux processus Auto Régressif AR(1), Moyenne Mobile
MA(1), et ARFIMA (1,d,0). Puisque le but est d'étudier la présence de
mémoire courte, on se contentera de trois tailles seulement, une petite
(n=300), une moyenne (n=750) et une large (n=1500).

e Les processus MA(1):

Les résultats de I'estimateur du degré d'intégration dgpy dans les
processus simulés de type MA(1) : Y; = (1 — 6B)s,, sont représentés
dans le tableau n°02.

i= 04 05 06

N 0= 07 03 03 07 07 03 03 -07 07 03 03 07

1500 | den 0221 0032 0004 0015 | 0433 -0,033 0006 0012 | -0,183 0,000 0,000 0,021

750 | e -0,045 0,013 -0,005 -0,007 | -0,308 -0,038 -0,004 0,010 | -0,341 -0,012 0,019 -0,006

300 Ao -0,069 0,029 -0,069 0029 | -0,253 0,007 0,009 0,008 | -0,231 0,006 0,005 -0,012
d'échantillon N=1500.
Tableau 02: simulation des processus MA(1) pour différents

D'apres ce tableau, on remarque que le biais est faible dans tous les
cas sauf dans les cas ou les valeurs du paramétre moyenne mobile sont
élevées et positives. Effectivement, si on observe le tableau dont
p=0.5¢et p=0.6, on remarque que lorsque le paramétre Oest proche de 1,
le biais est important, alors que, par contre, pour les valeurs négatives
de ce paramétre méme les plus extrémes, proche de -1, I'estimation est
trés appréciée. Et malgré la diminution de la taille d'échantillon,
I'estimateur GPH de paramétre d'intégration fractionnaire est apprécié
pour toutes les valeurs du parametre moyenne mobile lorsque p=0.4
sauf pour les valeurs €levés. Dans le cas ou p=0.6 et u=0.5, le biais
est ¢levé par apport a 'autre cas (u=0.4), et le biais est toujours
importantpour les valeurs élevées du paramétre moyenne mobile.

La remarque importante qu’on peut extraire de ce tableau, est que
I’estimateur du paramétre d est sensible aux choix du nombre de
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fréquence m par rapport a la taille de I’échantillon. Tel que, quand la
taille de 1’échantillon est petite, le paramétre dgpy est plus précis
lorsque le nombre de fréquence est petit. Donc le choix du nombre de
fréquence a retenir dans la méthode dépend de la taille d’échantillon.

e Les processus AR(1)

Les résultats d'estimation du degré d'intégration d;py dans les
processus simulés de type AR(1) : (1 — @B)Y; = &, sont représentés
dans le tableau n° 03.

p= 0.4 05 06

p= 07 03 03 07 07 03 03 07 07 03 03 07

dGPH
dGPH

dGPH

-0,022 0,016 0,008 -0,022

0012 0,030 -0,018 0,016

0,005 -0,002 0,022 0,034

0,433 0,056 -0,019 -0,022

0,433 0,056 -0,008 -0,023

0,273 0,007 -0,008 -0,011

0,093 0,014 -0,008 -0,004

0211 -0,047 -0,006 0,003

0221 0,052 -0,005 -0,002

Tableau 03: simulation des processus AR(1) pour différents
tailles d'échantillon N=1500, N=750 et N=300.

On remarque que les suggestions faites dans le paragraphe précédent
(cas MA(1)) restent valables dans le cas des processus AR(1).

L'étude de l'estimateur d.py dans le cas des processus fractionnaires
purs FI(d) a permis de constater que I'estimateur du degré d'intégration
fractionnaire est robuste, et il ne dépend ni de la taille d’échantillon et
ni du nombre de fréquence retenu dans I’estimation. La lecture du
tableau 2 (respectivement 3) permet de tirer la méme remarque dans le
cas ou les paramétres des processusMoyennes  Mobiles
(respectivement Autorégressifs) prennent des valeurs négatives. Pour
les valeurs positives importantes du parametre 6 =0.7 (respe =0.7)
cette méthode (GPH) ne donne pas des meilleurs estimateurs dans tous
les cas, tel que par exemple lorsque p=0.6, le biais dépasse la valeur
0.34 lorsque N=750, et dépasse la valeur 0.18 lorsque n=1500. Donc

on peut conclure que pour obtenir des meilleurs estimateurs par la
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méthode GPH lorsque la taille de I'échantillon est petite et le
parameétre de polyndme Autorégressive prend des valeurs positives, il
faut choisir un nombre de fréquences m inférieur & N ®° ouN est la
taille de I'échantillon.

c. Les processus mixtes

Les tableaux 04, 05 et 06 montrent les résultats de simulations
effectuées pour l'estimation du degré d'intégration fractionnaire des
processus ARFIMA (1,d,0): (1 — ¢B)(1 — B)4Y, = «,.

d= 0,45 0,3
Q= 0,7 0,3 -03 0,7 0,7 0,3 -03 -0,7
u=04 u=04
dgpy 0,460 0,459 0,490 0,481 0,287 0,321 0,275 0,281
biais -0,010 -0,009 -0,040 -0,031 0,013 -0,021 0,025 0,019
u=05 u=05
depn 0,491 0,458 0,443 0,464 0,346 0,317 0,319 0,284
biais -0,041 -0,008 0,007 -0,014 | -0,046 -0,017 -0,019 0,016
n=006 u=006
dgpy 0,547 0,477 0,459 0,450 0,390 0,317 0,313 0,290
biais -0,097 -0,027 -0,009 0,000 -0,090 -0,017 -0,013 0,010

Tableau 04: simulation des processus ARFIMA(1,d,0) pour la taille

d= 0,45 0,3

0= 0,7 0,3 -03 07 0,7 0,3 -03 0,7
n=04 u=04

depn 0,499 0,479 0,470 0,429 0,318 0,286 0,278 0,312

biais -0,049 -0,029 -0,020 0,021 -0,018 0,014 0,022 -0,012
un=05 u=05

depn 0,493 0,466 0,464 0,428 0,370 0,312 0,315 0,301

biais -0,043 -0,016 -0,014 0,022 -0,070 -0,012 -0,015 -0,001
n=2006 u=06

depn 0,499 0,467 0,467 0,464 0,449 0,334 0,279 0,295

biais -0,049 -0,017 -0,017 -0,014 | -0,149 -0,034 0,021 0,005

Tableau 05: simulation des processus ARFIMA(1,d,0) pour la taille

d'échantillon N=750.
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d= 0,45 03

¢ = 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7
n=04 n=04
rfGPH 0,499 0,445 0,435 0,498 0,367 0,309 0,228 0,283

biais -0,049 0,005 0,015 -0,048 | -0,067 -0,009 0,072 0,017

n=05 un=05
dpr 0,499 0,499 0422 0,437 0,337 0315 0,322 0,308
biais -0,049 -0,049 0,028 0,013 -0,037 -0,015 -0,022 -0,008

un=106 u=06
dopn 0,499 0,498 0425 0,424 0,394 0,342 0,317 0,297
biais -0,049 -0,048 0,025 0,026 -0,094 -0,042 -0,017 0,003

Tableau 06: simulation des processus ARFIMA(1,d,0) pour la taille
d'échantillon N=300.

De ces tableaux, on déduit les mémes résultats que ceux de I'étude des
processus AR(1) et MA(1). On voit bien que le biais est assez élevé
lorsque la valeur du paramétre autorégressif est proche de 1 (a la
limite de non stationnarité). Alors il existe un effet néfaste de la
présence de mémoire courte sur I'estimateur d;py.

Application Empirique :

Etude du phénomeéne ‘’Mémoire longue®’ dans les données de
température de I’air de la vile d’Alger

Dans ce paragraphe, nous présentons une application des processus a
mémoire longue sur des données réelles. Et suite a l'introduction des
modéles ARFIMA, beaucoup d'applications des processus a mémoire
longue ont été développées dans la littérature statistique. En
particulier, les domaines de la finance et de I'environnement
constituent les champs d'applications de prédilection des chercheurs.
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Notre applicationestorientée, principalement, dans une optique
previsionnelle. Ainsi, nous utilisons des critéres de prévision comme
éléments de comparaison entre les différents modéles estimés. Par ces
applications nous mettons en évidence la capacité prédictive des
processus a mémoire longue, en particulier sur des horizons de
prévision de moyen et long terme. Cette application est réalisée sur
des données climatiques relatives a la température de I'air dans la ville
Alger.

Présentation des données:

Dans ce paragraphe, on s'intéresse a la série chronologique de type
climatique: la série journaliere de la température de l'air relevée a
Alger, du premier janvier 2012 au 31 décembre 2013. Les
températures sont en degres Fahrenheit et la valeur de chaque jour
correspond a la moyenne journaliere des températures prise toute les 3
heures.

On note pour cette série par (tempalgy): dont une représentation
graphique est donnée par la figure 01.
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Figure 01: Evolution de la série journaliére de température de I'air a Alger

Nous allons modéliser cette série en utilisant de maniéere compétitive
deux approches différentes. La premiére approche est basée sur une
modélisation linéaire a mémoire courte de type ARIMA, et la seconde
approche est basée sur une modélisation & mémoire longue de type
ARFIMA.De plus, pour chacune de ces deux approches, nous
étudierons I'impact en prévision des différents modéles estimes.

Pour chaque modéle, on compare les capacités prédictives a l'aide du
critére de la racine carré de I'erreur quadratique moyenne de prévision,
noté RMSE ("RootMeanSquaredError"). Ce critére est défini comme
suit:

h
1 o
RMSE= [+ (s = %))’
i=1

Ou h est I'horizon de prévision et X, (i) est la valeur prédite de X,
Pour chaque approche, les prévisions sont calculées pour h=1, 3 et 6.

Premiére approche:

Dans cette premiere approche, nous utilisons la méthode classique de
modélisation et de prévision de Box et Jenkins (1970). Et pour étudier
la stationnarité de cette série on effectue le test de Dickey Fuller
augmenté (ADF). Les résultats sont présentés dans le tableau suivant:
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Modeéles coefficients valeur Stat observée Probabilité
Modéle avec ADF - -2.91951 0.1575
tendance et Trend 0.00054 0.50906 0.6110
constante C 0.76594 2.47546 0.0138
Tempalg(-1) -0.04960 -2.91951 0.0037
Modéle sans ADF - -0.93263 0.4261
tendance C 0.00131 0.74091 0.1064
avec constante Tempalg(-1) -0.04653 -0.93263 0.0036
Modele sans ADF - -1.0882 0.5472
tendance Tempalg(-1) -1.10347 -1.0821 0.0048
sans constante
Modele sans ADF - -21.1114 0.0000
tendance D(Tempalg(-1)) | -1.10348 -21.1114 0.0000
sans constante

Tableau 07: test ADF sur la série des températures de l'air de la ville
d'Alger

D'aprés ce tableau on remarque que le coefficient de la tendance
(modele 01) est non significatif au seuil statistique 5%, et la constante
n’est pas significative au méme seuil (modele 02), et la série n'est pas
stationnaire dans le modéle 03ou il n’y a ni tendance ni constante.
Apres la différentiation premiére de la série, on procede au test de
racine unitaire. La valeur estimée de la statistique ADF (qui
correspond a la t-statistique du coefficient de tempalg(-1)) est égale a
-21.1114, cette valeur est inférieure a la valeur critique -1.95 au seuil
statistique de 5% (modeéle 04). En rejette en conséquence I'hypothése
nulle de présence d’une racine unitaire. Donc la série D(tempan(-1))
est stationnaire (intégrée d'ordre 1).

Apreés le passage par les quatre étapes de la méthodologie de Box et
Jenkins, & savoir l'identification, l'estimation, la validation et la
prévision, on retient le modele ARIMA(1,1,1) pour la série
A(tempalg,) qui s'écrit comme suit :

(1 - 0.655B)(1 — B)(tempalg,) = (1 — 0.885B)¢,
Les résultats relatifs a la qualité des prévisions obtenues a partir de ces

deux modeéles sont contenus dans le tableau 08.
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Deuxiéme approche:

On s'intéresse maintenant a une approche longue mémoire de cette
série journaliere des températures de l'air, a l'aide d'un processus
ARFIMA.

Dans un premier temps, on suppose que les ordres p et q des
polynémes autoregressif et moyenne mobile sont nuls. On estime alors
le paramétre de mémoire longue par la méthode GPH présentée
précédemment, et nous prenons en considération la valeur de p,(ici
comme la taille de I’échantillon est petite n=365, nous prenons
1 = 0.4). On obtient le processus ARFIMA(0,d,0) suivant:

(1 — B)%®1%7tempalg, = ¢,

Dans une seconde étape, on cherche a spécifier correctement les
ordres des parties, autorégressive et moyenne mobile de ces deux
processus. Pour cela, on effectue une recherche de p et q (étape
identification de la méthode Box et Jenkins), puis on passe a I'étape
d'estimation des parametres. On retient un processus de type
ARMA(1,0) de la série qui s'écrit de la forme suivante:

1 —0.122B)(1 — B)%%17 tempalg, = &,
g

On remarque d’apres I’estimation que le parametre de mémoire longue
d estimé est superieur a 0.5, or I’intervalle du parameétre d’intégration

fractionnaire d’un processus ARFIMA a mémoire longue est [-
1/2,1/2].

Dans ce cas-1a, le processus considéré est alors non stationnaire. Donc
on peut différencier la série, de maniére a ce que le parametre de
mémoire longue soit dans [—0.5,0.5[. cette méthode considére
uniquement le probléme de 1’estimation des parametres, et elles ne se
place pas d’un point de vus prévisionnel. Laurent FERRARA dans sa
these de doctorat, a montré de maniere empirique que le modéle qui
correspond au processus ARFIMA non stationnaire, donne des
prévisions qui convergent lentement vers la moyenne non
conditionnelle du processus. Par contre les prévisions issues des
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modeles ARFIMA des séries différencier ne converge pas. Donc,
garder les données brutes, méme en cas de non stationnarité, constitue
une meilleure approche d’un point de vue de prévisionnelle.

On continue, alors, la procédure de prévision du modele ARFIMA
dans ce cas et voir sa qualité prédictive.

Les résultats relatifs a la qualité des prévisions sont dans le tableau
suivant :

R o Horizon
Modéle Critere h=1 h=3 h=6
ARIMA(1,1,1) RMSE 1.3724 1.6077 1.7143
ARFIMA(1, 1.4117 1.4170 1.4170
0.616, 0)

Tableau 08: résultats relatifs a la qualité des
prévisions de la série de température de l'air de
la ville d’Alger a partir des processus ARIMA

et ARFIMA.

Dans un but de comparaison des résultats de prévision des deux
modéles choisies, on observe d'apres le tableau 08, que sur un horizon
de prévision de court terme (h = 1), le modéle a mémoire courte de la
série (tempalgt); est plus précis que le modéle ARFIMA. Par contre,
lorsque I'horizon de prévision augmente (h = 3, h = 6), le modele
ARFIMA améliore leur performance, et il est plus précis que le
modele @ mémoire courte.

Conclusion :

Dans ce papier nous avons concentré notre travail sur une méthode
d'estimation du parametre d'intégration fractionnaire,a savoir, la
méthode de Geweke et Porter-Hudak.Ce travail a été fait
essentiellement par une étude théorique basée sur des simulations des
différents processus de type ARFIMA(p,d,q).

L'idée est d'étudier la convergence et la divergence de ces méthodes et
leurs pouvoirs d'estimation. Pour cela, on a simulé plusieurs processus
ARFIMA avec plusieurs valeurs de d, puis on est passé a I'estimation

100




par la méthode GPH en premier lieu pour plusieurs valeurs du nombre
de fréquences m (m=T"; p=0.4, 0.5, 0.6). On a déduit,pour les
résultats d'estimation des processus purs (ARFIMA(0,d,0)), que le
biais de 'estimateur dgpy est toujours petit, et I'estimateur dgpy dans
ce cas ne dépend ni de la taille déchantillon, ni du nombre de
fréquences utilisees. Et pour les processus mixtes (présence de
mémoire courte) avec différentes valeurs du parametre autorégressif
(respectivement moyenne mobile), la premiere remarque qu'on peut
souligner est le fort biais dans I’estimation du parametre de longue
mémoire des processus ARFIMA(1,d,0) et ARFIMA (0,d,1), en
particulier lorsque la valeur du coefficient AR ou MA est proche de
1; ceci méme sur des échantillons de grande taille. La deuxiéme
remarque tirée de ces estimations est que 1’estimateur du parametre d
est sensible aux choix du nombre de fréquence m par rapport a la taille
de I’échantillon.

Ensuite nous avons présenté une application des processus a mémoire
longue ARFIMA sur des données réelles de type climatique.L’étude
de ces séries était orientée essentiellement dans une optique
prévisionnelle, ou on a comparé les capacités prédictives des
processus a mémoire longue contre les processus a mémoire courte sur
des horizons de prévision court, moyen et long terme.

Les résultats présentés sur les deux précedentes applications
soulignent 1’intérét des processus ARFIMA, lorsqu’on désire effectuer
des prévisions sur une série chronologique. En comparant avec les
résultats obtenus en prévision par les processus a mémoire courte, les
processus a mémoire longue sont performants sur un horizon moyen et
long terme. Cependant, si on désire obtenir des prévisions a court
terme ( h=1 par example), il semble que les processus a mémoire
courte soit plus efficace.
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