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Etude du pouvoir estimatif de la méthode Geweke Porter-Hudak 

sur les modèles ARFIMA : 

Application sur la température de l’aire de la ville d’Alger 
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Résumé : 

Ce papier présente une méthode de prévision d’une série 

chronologique basé sur un modèle à mémoire longue à savoir le 

processus autorégressif- moyenne mobile fractionnairementintégré 

(noté ARFIMA par la suite). Le paramètre d’intégration fractionnaire 

dans le modèle ARFIMA est estimé par une méthode semi-

paramétrique de Geweke Porter-Hudak (GPH par la suite). Nous 

essayons de déterminer les différents facteurs influant sur l’estimation 

par GPH du  paramètre d’intégration fractionnaire (d) des séries 

simulées par la méthode de Monte Carlo, puis on utilise cette méthode 

d’estimation pour prédire la série temporelle de température de l’aire 

de la ville d’Alger. 

Mots clés : mémoire longue, ARFIMA, GPH, prévision, température 

de l’aire. 

 

Introduction : 

Une grande partie d'analyse des  séries chronologiques considère le 

cas où l'ordre d’intégration, d, est un entier. Si une série est intégrée 

d’ordre un ou plus, cette série n’est pas stationnaire, et sa fonction 

d’autocorrélation  (ACF) diminue linéairement. Et si  elle est intégrée 

d’ordre zéro,  son ACF montre une décroissance exponentielle.Donc, 

on peutdire que des observations séparées par une longue période sont 

indépendantes. Beaucoup de travaux ont discuté l'analyse d'un tel 

comportement dans des détails considérables. Néanmoins, beaucoup 
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de séries chronologiques empiriquement observées, semble être 

stationnaire (même après certaine différenciation), montre une 

dépendance entre les observations éloignées qui(bien que petite) est 

nullement négligeable.Ces séries se caractérisent par une fonction 

d’autocorrélation qui décroît hyperboliquement. Ce type de 

comportement est appelé mémoire longue. Ce phénomène est apparu 

dans les années 1895 à partir des observations de l’astronome New 

Comb puis du chimiste Student (1927). Le domaine qui a été très 

certainement à l’origine de l’essor des modèles à mémoire longue est 

l’hydrologie, avec les travaux fondateurs de Hurst (1951) sur les crues 

du Nil. Ses travaux ont montré que certaines séries présente une 

structure de corrélation particulière (mémoire longue), et il a introduit 

un outil statistique qui permet de détecter la mémoire longue dans une 

série chronologique et qui porte son nom : exposant de Hurst noté H. 

Ces travaux ont été suivis et approfondi par d’autres chercheurs qui 

ont élaboré d’autres modèles qui caractérisent ce phénomène, comme 

les processus auto-similaire (self-similar) ainsi que des processus de 

séries temporelles ont été développés afin de rendre compte des 

propriétés atypiques de la fonction d’autocorrélation et de la densité 

spectrale. Ces processus, appelés ARFIMA (Auto-

regressiveFractionallyItegratedMovingAverage) ;  ont été introduits 

pour la première fois par Granger et Joyeux (1980). Ces processus 

constituent un prolongement des modèles ARIMA, dans lesquels le 

coefficient d’intégration prend des valeurs réelles (d ∈R), on l’appelle 

le coefficient d’intégration fractionnaire. Les propriétés statistiques de 

ces processus ont fait l’objet de plusieurs recherches (Granger et 

Joyeux (1980) et Hosking (1981)) et elles sont maintenant bien 

connues. 

Dans notre travail on commence de présenter une définition de la 

notion de mémoire longue ainsi que la définition, les propriétés et la 

méthode d’estimation de Geweke Porter-Hudak (GPH par la suite) du 

processus ARFIMA. Puis on effectuera une application théorique de la 
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méthode d’estimation GPH basé sur des simulations de Monté Carlo, 

puis on consacre la dernière partie à l’application de la méthode 

d’estimation proposée sur la série journalière de température de l’aire 

dans la ville d’Alger de l’année 2012. 

1. Les processus à mémoire longue : 

1.1 Définition des processus à mémoire longue : 

Les processus à mémoire longue peuvent être définis de façon  

équivalente dans le domaine spectral et le domaine temporel. 

1.1.1 Dans le domaine fréquentiel : 

Les processus à mémoire longue sont caractérisés par une densité 

spectrale s’accroissant sans limite quand la fréquence tend vers 

zéro. 

Définition : 

Un processus stationnaire  Xt t∈Z  est un Processus à mémoire 

longue s’il existe un nombre réel β, 0 < β < 1 et une constante c', 

c' > 0 vérifiant : 

lim
λ→0

f λ 

c′ λ −β
= 1                                                                            (1.1) 

f λ  : la densité spectrale du processus  Xt t∈Z  à la fréquence λ 

On en déduit immédiatement quef(λ) ~ c'│λ│- β
, quandλ → 0. Ainsi la 

densité spectrale exhibe un pôle à la fréquence zéro, contrairement à la 

densité spectrale des processus à mémoire courte qui est finie et 

positive aux basses fréquences. 

 

1.1.2 Dans le domaine temporel 

Les processus à mémoire longue sont caractérisés par une fonction 

d’autocorrélation décroissante hyperboliquement au fur et à 

mesure que le retard s’accroît, à l’encontre des processus à 

mémoire courte où elle décroît exponentiellement. 

 

Définition : 
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Un processus stationnaire  Xt t∈Z  est un Processus à mémoire 

longue s’il existe un nombre réel  α, 0 < α < 1et une constante c, 

c > 0 vérifiant : 

lim
k→∞

ρ k 

c k−α
= 1                                                                             (1.2) 

Où  ρ  est la fonction d’autocorrélation et k le retard. 

Par conséquent, les autocorrélations d’un processus à mémoire  longue 

vérifient la relation asymptotique suivante :ρ~c k−αquand c → ∞, où 

c ∈ ℝ+ et 0 < α < 1.   

1.2 Etude des processus ARIMA fractionnaire : 

Dans le domaine des méthodes d'analyse des séries temporelles, il 

arrive souvent qu’on modélise des séries à mémoire longue au moyen 

de processus à mémoire courte tels que les modèles ARMA. Ceci 

revient alors à approximer la fonction d'autocorrélation qui décroît 

hyperboliquement au moyen d'une somme d'exponentielles. Même si 

une telle procédure est toujours possible, elle ne conduit pas à un 

modèle parcimonieux puisqu'il est nécessaire de considérer des retards 

très élevés dans la modélisation ARMA. Cette difficulté peut être 

résolue grâce à l'introduction des processus ARFIMA 

(AutoregressiveFractionnallyIntegratedMovingAverage) dont la 

caractéristique essentielle est la présence d'un paramètre d'intégration 

fractionnaire prenant explicitement en compte  le comportement de 

long terme de la série.  

Définition : 

Un processus  Xt t∈Z  suit un processus ARFIMA (p,d,q) s’il satisfait 

l’équation suivante: 

Φ B  1 − B dXt

= Θ B εt                                                                  (1.3) 
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Où εt  est un bruit blanc de variance σ2, Φ B  et Θ(B) sont deux 

polynômes caractéristiques d’ordre p et q respectivementdont les 

racines sont à l'extérieur du disque unité, et d ∈ ℝ. 

 1 − B dest appelé opérateur (Filtre) de différence fractionnaire. 

 1 − B dest le développement binomiale défini par: 

 1 − B d = Δ
d = 1 − dB −

d 1 − d 

2!
B2 −

d 1 − d  2 − d 

3!
B3 − ⋯

=  
Γ(k − d)

Γ(−d)Γ(1 + j)
Bj

+∞

j=0

 

Où Γ(. ) : correspond à la fonction Gamma. 

On remarquera que les processus ARMA et ARIMA sont des cas 

particuliers des processus ARFIMA dans lesquels, respectivement 

d = 0 et dest un entier. 

Propriétés : 

Le processus ARFIMA le plus simple est le bruit fractionnaire, ou 

ARFIMA(0,d,0): 

 1 − B dXt = εt                                                                       (1.4) 

Les principales propriétés de ce processus sont données par: 

a) Lorsqued <
1

2
,  Xt t∈Zest un processus stationnaire et possède 

une représentation moyenne mobile infinie. 

b) Lorsqued >
−1

2
,  Xt t∈Zest un processus inversible et a une 

représentation auto- régressive infinie. 

c) Lorsqued ≥
1

2
 ,  Xt t∈Zest un processus non stationnaire. 

Lorsque−
1

2
< d <

1

2
 , le processus est stationnaire et inversible. La 

décroissance hyperbolique de la fonction d'auto corrélation indique 
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que les processus ARFIMA sont des processus à mémoire longue 

lorsque d est différent de zéro. En outre, le comportement de la densité 

spectrale aux basses fréquences montre que, lorsque d est positif, 

 Xt t∈Zest un processus persistant. 

On peut alors établir une classification des séries temporelles d’après 

les résultats du théorème précédent en fonction des valeurs du 

paramètre d'intégration fractionnaire d: 

- si 𝑑 = 0, le processus ARFIMA (p,0,q) se réduit au processus 

ARMA standard et exhibe uniquement une mémoire de court terme 

(ne présente aucune structure de dépendance à long terme. 

- Si 0 < 𝑑 <
1

2
le processus ARFIMA est un processus 

asymptotiquement stationnaire à mémoire longue. Les 

autocorrélations sont positives et diminuent hyperboliquement vers 

zéro lorsque le retard augmente. La densité spectrale est concentrée 

autour des faible fréquences (cycles lents), elle tend vers l'infini 

lorsque la fréquence tend vers zéro. On est face à un processus 

persistant. 

- Si −
1

2
< 𝑑 < 0 le processus est anti-persistant, les autocorrélations 

alternent de signe et la densité spectrale est dominée par des 

composantes de haute fréquence (la densité spectrale tend vers zéro 

lorsque la fréquence tend vers zéro). 

2. Estimation par la méthode de Geweke Porter-Hudak (1983) 

Cette méthode est l’une des méthodes d’estimation semi-paramétrique 

du paramètre d’intégration fractionnaire dd'un processus 

ARFIMA(p,d,q). Dans la suite, nous présentons cette méthode dite 

aussi log-périodogramme  proposée par Geweke et  Porter-Hudak 

(1983). 
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Principe de la méthode : 

D'une manière générale, on considère un processus scalaire, (𝑋𝑡)𝑡∈𝑍 , 

faiblement  

stationnaire, dont la densité spectrale est de la forme suivante sur 

l'intervalle [0,2π[: 

 

 

𝑓 𝜆 =  2 𝑠𝑖𝑛  
𝜆

2
  

−2𝑑

𝑓∗ 𝜆                                                                  (2.1) 

Où 

𝑓∗ 𝜆 =
𝜎2

2𝜋

 𝜃(𝑒−𝑖𝜆 ) 
2

 𝜙(𝑒−𝑖𝜆) 2
                                                                  (2.2) 

où d est le paramètre de mémoire compris dans l'intervalle (−
1

2
,

1

2
) et 

𝑓∗ est une fonction continue bornée sur tout l'intervalle [0.2π[. le 

paramètre d contrôle le comportement de la densité spectrale dans un 

voisinage de zéro alors que 𝑓∗ contrôle le comportement de courte 

mémoire. 

En calculant l'équation (2.1) aux fréquences de Fourier : 𝜆𝑗 = 2𝜋𝑗 /𝑁, 

pour 𝑗 = 0, … , 𝑁 − 1, où N est la taille de l'échantillon, et par passage 

aux logarithmes, on obtient alors: 

𝑙𝑜𝑔 𝐼𝑁 𝜆𝑗  = −2𝑑 𝑙𝑜𝑔  2 𝑠𝑖𝑛  
𝜆𝑗

2
  + 𝑙𝑜𝑔 𝑓∗ 0 + 𝑙𝑜𝑔

𝑓∗ 𝜆𝑗  

𝑓∗ 0 

+ 𝑙𝑜𝑔
𝐼𝑁 𝜆𝑗  

𝑓 𝜆𝑗  
                          (2.3) 
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Où 𝐼𝑁(𝜆𝑗 ) est le périodogramme (l'estimateur asymptotiquement sans 

biais de la densité spectrale (𝜆)) calculé à la fréquence 𝜆𝑗 , défini par 

l'expression: 

𝐼𝑁 𝜆 =
1

2𝜋𝑁
  𝑒𝑖𝜆𝑡  𝑋𝑡

− 𝑋 𝑁  
2

                                                           (2.4) 

 

On considère alors  l'équation (2.3) lorsque T tend vers l'infini, j étant 

fixé. 

L'estimateur GPH nécessite à ce niveau deux hypothèses cruciales, 

relatives au comportement asymptotique des éléments de l'équation 

(2.3). 

(H1) : pour des fréquences suffisamment basses (𝜆 → 0) le terme 

𝑙𝑜𝑔
𝑓∗ 𝜆𝑗  

𝑓∗ 0 
 est négligeable.  

(H2) : la suite des termes 𝑙𝑜𝑔
𝐼𝑁 (𝜆𝑗 )

𝑓(𝜆𝑗 )
  pour 𝑗 = 1, … , 𝑚 est 

asymptotiquement indépendante et identiquement distribuée (i.i.d) ; le 

nombre m de fréquences considérées est alors appelé la largeur de 

bande. 

Sous les hypothèses (H1) et (H2), l’estimateur GPH du paramètre de 

mémoire d, noté 𝑑 GPH, s’obtient alors en considérant la régression 

linéaire simple, pour 𝑗 =  1, … , 𝑚 :       

𝑙𝑜𝑔 𝐼𝑁 𝜆𝑗  = 𝑎 + 𝛽𝑍𝑗

+ 𝜀𝑗                                                                        (2.5) 

Où 

 𝑎 = 𝑙𝑜𝑔 𝑓∗ 0 − 𝛾 
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 𝑍𝑗 = −2𝑑 𝑙𝑜𝑔  2 𝑠𝑖𝑛  
𝜆𝑗

2
   

 𝜀𝑗 = 𝑙𝑜𝑔
𝐼𝑁 (𝜆𝑗 )

𝑓(𝜆𝑗 )
 

L’estimateur GPH est alors explicitement défini par l’égalité 

suivante : 

𝑑 𝐺𝑃𝐻

=
  𝑍𝑗 − 𝑍  𝑙𝑜𝑔 𝐼𝑁(𝜆𝑗 )𝑚

𝑗 =1

  𝑍𝑗 − 𝑍  ²𝑚
𝑗=1

                                                                   (2.6) 

Geweke et Porter-Hudak(1983) montrent que, quand -1/2 < 𝑑 < 1/2  

, la loi de l'estimateur, 𝑑̂𝐺𝑃𝐻 , de d tend vers une loi normale lorsque 

𝑁 → ∞: 

 

𝑑 𝐺𝑃𝐻~𝑁  𝑑, 𝜋²  6   𝑍𝑗 − 𝑍  
𝑚

𝑗=1
² 

−1

  

En suivant les suggestions de GPH (1983), le nombre de fréquence 𝑚  

est choisie de telle manière que m= 𝑁𝜇  , avec 𝜇 = 0.5, 0.6, 0.7. 

 

3. Expériences de simulation : 

Dans le présent paragraphe, on effectuera une étude pratique des 

méthodes d'estimation de la mémoire longue à partir des simulations 

de Monté Carlo. On étudiera la technique de Geweke et Porter-Hudak 

en procédant au calcul de l'estimateur   𝑑 𝐺𝑃𝐻    pour plusieurs valeurs 

du nombre de fréquences m (m=T
 μ

μ=0.4, 0.5, 0.6, sachant que T est 

la taille de l'échantillon), effectué par des simulations des différents 

processus ARFIMA. Tout d'abord on s'intéressera au cas 

ARFIMA(0,d,0) avec absence de mémoire courte, on effectue des 
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simulations à ces processus pour plusieurs valeurs de d ( 0.45, 0.30, 

…). On estime ces modèles et on calculera le biais, puis on procédera 

au test du coefficient d'intégration. Cette étape sera reproduite sur des 

processus mixte (présence de mémoire courte), on s'intéresse aux 

simulations des processus autorégressifs  fractionnaires 

ARFIMA(1,d,0). Tous les résultats de simulation sont présentés dans 

des tableaux. Et après chaque simulation, les résultats seront 

interprétés. 

 

 

3.1. Les hypothèses de travail: 

Les simulations des processus à mémoire longue ARFIMA(0,d,0) et  

ARFIMA(0,d,1) sont faites à l'aide du package fracdiff  du logiciel 

statistique R 2.6.1.  

Les simulations de ces processus reposent sur certaines conditions et 

hypothèses: 

1. Pour chaque expérience, différentes tailles d'échantillons 

ont été retenues: Petite (n = 100), moyenne (n = 500) et 

large (n = 750, n = 1500) 

2. la variance de  𝑑 𝐺𝑃𝐻 , peut être écrite par la formule: 

𝑣𝑎𝑟 𝑑 𝐺𝑃𝐻 =
𝜋2

24𝑚
+ 𝑜  

1

𝑚
     𝑎𝑣𝑒𝑐    𝑚 = 𝑁𝜇 ,    𝜇

= 0.4, 0.5, 0.6 

Elle dépend de la taille de l'échantillon et du nombre de 

fréquences. Par exemple pour toutes les séries de taille 

300, et pour μ=0.5 la variance 𝑣𝑎𝑟 𝑑 𝐺𝑃𝐻 ≈ 0.0237et 

pour celles dont la taille est n=1500 la 𝑣𝑎𝑟 𝑑 𝐺𝑃𝐻 ≈

0.0106.  
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3. Pour chaque cas, les résultats sont résumés dans des 

tableaux, où on trouve les vraies valeurs de d,de 𝜙, et de 

𝜃(les coefficients autorégressifs et moyennes mobiles 

respectivement), la valeur estimée 𝑑 𝐺𝑃𝐻 , la différence 

(vrai valeur  – la valeur estimée) qui représente le biais 

moyen. 

3.2. Les résultats des simulations par l'approche GPH: 

a. Les processus ARFIMA(0,d,0): 

Dans ce paragraphe, nous allons présenter les simulations réalisées sur 

des modèles de type ARFIMA pur :  1 − 𝐵 𝑑𝑌𝑡 = 𝜀𝑡 , ces modèles 

diffèrent selon plusieurs critères, à savoir la taille de l'échantillon, la 

valeur du paramètre d'intégration fractionnaire et la puissance utilisée 

pour déterminer le nombre de fréquences qui sont utilisées  dans  la  

régression  qui  permet  d'estimer 𝑑 𝐺𝑃𝐻  . 

Les résultats de simulations dans le cadre de détection d'une mémoire 

longue dans les processus fractionnaires purs sont regroupés dans le 

tableau suivant. 

D'après letableau de simulation n° 01, on voit bien que les estimateurs 

sont très proches des vraies valeurs pour toutes les tailles choisies. Et 

l'écart entre la valeur estimée et la vraie valeur ne dépasse pas 0.047, 

malgré les changements faites sur la taille d'échantillon et sur le 

nombre de fréquences m. 
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On conclut que le biais de l'estimateur 𝑑 𝐺𝑃𝐻  dans le cas des processus 

ARFIMA(0,d,0) est toujours petit, et l'estimateur 𝑑 𝐺𝑃𝐻  dans ce cas ne 

dépend ni de la taille d'échantillon, ni du nombre de fréquences 

utilisées. 

b. Présence d'une mémoire courte: 

     Dans le paragraphe précédent, dans le traitement des processus 

fractionnaires purs ARFIMA(0,d,0) on s'est intéressé à l'effet de la 

taille et à l'effet de nombre des fréquences sur la précision de 

l'estimateur 𝑑 𝐺𝑃𝐻 , de ce fait tous les cas cités avant (plusieurs taille et 

plusieurs nombres de fréquence) ont été traités. 

Dans ce paragraphe, on va essayer d'étudier la robustesse de la 

méthode d'estimation de Geweke et Porter-Hudak sur les processus 

ARIMA fractionnaires avec une présence de mémoire courte, on 
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s'intéresse aux processus Auto Régressif AR(1), Moyenne Mobile 

MA(1), et ARFIMA (1,d,0). Puisque le but est d'étudier la présence de 

mémoire courte, on se contentera de trois tailles seulement, une petite 

(n=300), une moyenne (n=750) et une large (n=1500). 

 Les processus MA(1): 

Les résultats de l'estimateur du degré d'intégration 𝑑 𝐺𝑃𝐻  dans les 

processus simulés de type MA(1) : 𝑌𝑡 =  1 − 𝜃𝐵 𝜀𝑡 , sont représentés 

dans le tableau n°02. 

 

 

 

 

 

 

D'après ce tableau, on remarque que le biais est faible dans tous les 

cas sauf dans les cas où les valeurs du paramètre moyenne mobile sont 

élevées et positives. Effectivement, si on observe le tableau dont 

μ=0.5et μ=0.6, on remarque que lorsque le paramètre θest proche de 1, 

le biais est important, alors que, par contre, pour les valeurs négatives 

de ce paramètre même les plus extrêmes, proche de -1, l'estimation est 

très appréciée. Et malgré la diminution de la taille d'échantillon, 

l'estimateur GPH de paramètre d'intégration fractionnaire est apprécié 

pour toutes les valeurs du paramètre moyenne mobile lorsque μ=0.4 

sauf pour  les valeurs élevés. Dans le cas où μ=0.6 et μ=0.5, le biais 

est élevé par apport à l’autre cas (μ=0.4), et le biais est toujours 

importantpour les valeurs élevées du paramètre moyenne mobile. 

La remarque importante qu’on peut extraire de ce tableau, est que 

l’estimateur du paramètre d est sensible aux choix du nombre de 

μ =

N θ = 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7

1500 0,221 0,032 0,004 0,015 -0,433 -0,033 0,006 0,012 -0,183 0,000 0,000 0,021

750 -0,045 0,013 -0,005 -0,007 -0,308 -0,038 -0,004 0,010 -0,341 -0,012 0,019 -0,006

300 -0,069 0,029 -0,069 0,029 -0,253 0,007 0,009 0,008 -0,231 0,006 0,005 -0,012

0,60,4 0,5

ˆ
GPHd

ˆ
GPHd

ˆ
GPHd

d'échantillon N=1500. 

Tableau 02: simulation des processus MA(1) pour différents 

tailles d'échantillon N=1500, N=750 et N=300. 
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fréquence m par rapport à la taille de l’échantillon. Tel que, quand la 

taille de l’échantillon est petite, le paramètre  𝑑 𝐺𝑃𝐻   est plus précis  

lorsque le nombre de fréquence est petit. Donc le choix du nombre de 

fréquence à retenir dans la méthode  dépend de la taille d’échantillon. 

   Les processus AR(1) 

Les résultats d'estimation du degré d'intégration 𝑑 𝐺𝑃𝐻  dans les 

processus simulés de type AR(1) :  1 − 𝜑𝐵 𝑌𝑡 = 𝜀𝑡  sont représentés 

dans le tableau n° 03. 

 

 

 

 

 

 

 

On remarque que les suggestions faites dans le paragraphe précédent 

(cas MA(1)) restent valables dans le cas des processus AR(1). 

L'étude de l'estimateur 𝑑 𝐺𝑃𝐻  dans le cas des processus fractionnaires 

purs FI(d) a permis de constater que l'estimateur du degré d'intégration 

fractionnaire est robuste, et il ne dépend ni de la taille d’échantillon et 

ni du nombre de fréquence retenu dans l’estimation. La lecture du 

tableau 2 (respectivement 3) permet de tirer la même remarque dans le 

cas où les paramètres des processusMoyennes Mobiles 

(respectivement Autorégressifs) prennent des valeurs négatives. Pour 

les valeurs positives importantes du paramètre θ =0.7 (respφ =0.7) 

cette méthode (GPH) ne donne pas des meilleurs estimateurs dans tous 

les cas, tel que par exemple lorsque μ=0.6, le biais dépasse la valeur 

0.34 lorsque N=750, et dépasse la valeur 0.18  lorsque n=1500. Donc 

on peut conclure que pour obtenir des meilleurs estimateurs par la 

μ =

φ = 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7

-0,022 0,016 0,008 -0,022 0,433 0,056 -0,019 -0,022 0,093 0,014 -0,008 -0,004

0,012 0,030 -0,018 0,016 0,433 0,056 -0,008 -0,023 0,211 -0,047 -0,006 0,003

0,005 -0,002 0,022 0,034 0,273 0,007 -0,008 -0,011 0,221 0,052 -0,005 -0,002

0,60,4 0,5

ˆ
GPHd

ˆ
GPHd

ˆ
GPHd

Tableau 03: simulation des processus AR(1) pour différents 

tailles d'échantillon N=1500, N=750 et N=300. 
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méthode GPH lorsque la taille de l'échantillon est petite et le 

paramètre de polynôme Autorégressive prend des valeurs positives, il 

faut choisir un nombre de fréquences m inférieur à N
 0.5

 oùN est la 

taille de l'échantillon. 

c.  Les processus mixtes 

Les tableaux 04, 05 et 06 montrent les résultats de simulations 

effectuées pour l'estimation du degré d'intégration fractionnaire des 

processus ARFIMA (1,d,0):    1 − 𝜑𝐵  1 − 𝐵 𝑑𝑌𝑡 = 𝜀𝑡 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d =

φ = 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7

0,460 0,459 0,490 0,481 0,287 0,321 0,275 0,281

biais -0,010 -0,009 -0,040 -0,031 0,013 -0,021 0,025 0,019

0,491 0,458 0,443 0,464 0,346 0,317 0,319 0,284

biais -0,041 -0,008 0,007 -0,014 -0,046 -0,017 -0,019 0,016

0,547 0,477 0,459 0,450 0,390 0,317 0,313 0,290

biais -0,097 -0,027 -0,009 0,000 -0,090 -0,017 -0,013 0,010

0,45 0,3

μ = 0,4

μ = 0,5

μ = 0,6

μ = 0,4

μ = 0,5

μ = 0,6

ˆ
GPHd

ˆ
GPHd

ˆ
GPHd

Tableau 04: simulation des processus ARFIMA(1,d,0) pour la taille 

d =

φ = 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7

0,499 0,479 0,470 0,429 0,318 0,286 0,278 0,312

biais -0,049 -0,029 -0,020 0,021 -0,018 0,014 0,022 -0,012

0,493 0,466 0,464 0,428 0,370 0,312 0,315 0,301

biais -0,043 -0,016 -0,014 0,022 -0,070 -0,012 -0,015 -0,001

0,499 0,467 0,467 0,464 0,449 0,334 0,279 0,295

biais -0,049 -0,017 -0,017 -0,014 -0,149 -0,034 0,021 0,005

0,45 0,3

μ = 0,4 μ = 0,4

μ = 0,5 μ = 0,5

μ = 0,6 μ = 0,6

ˆ
GPHd

ˆ
GPHd

ˆ
GPHd

Tableau 05: simulation des processus ARFIMA(1,d,0) pour la taille 

d'échantillon N=750. 

 



95 
 

 

 

 

 

 

 

 

 

 

De ces tableaux, on déduit les mêmes résultats que ceux de l'étude des 

processus AR(1) et MA(1). On voit bien que le biais est assez élevé 

lorsque la valeur du paramètre autorégressif est proche de 1 (à la 

limite de non stationnarité). Alors il existe un effet néfaste de la 

présence de mémoire courte sur l'estimateur 𝑑 𝐺𝑃𝐻 . 

 

 

Application Empirique : 

Etude du phénomène ‘’Mémoire longue‘’ dans les données de 

température de l’air de la vile d’Alger  

Dans ce paragraphe, nous présentons une application des processus à 

mémoire longue sur des données réelles. Et suite à l'introduction des 

modèles ARFIMA, beaucoup d'applications des processus à mémoire 

longue ont été développées dans la littérature statistique. En 

particulier, les domaines de la finance et de l'environnement 

constituent les champs d'applications de prédilection des chercheurs.  

d =

φ = 0,7 0,3 -0,3 -0,7 0,7 0,3 -0,3 -0,7

0,499 0,445 0,435 0,498 0,367 0,309 0,228 0,283

biais -0,049 0,005 0,015 -0,048 -0,067 -0,009 0,072 0,017

0,499 0,499 0,422 0,437 0,337 0,315 0,322 0,308

biais -0,049 -0,049 0,028 0,013 -0,037 -0,015 -0,022 -0,008

0,499 0,498 0,425 0,424 0,394 0,342 0,317 0,297

biais -0,049 -0,048 0,025 0,026 -0,094 -0,042 -0,017 0,003

μ = 0,5 μ = 0,5

μ = 0,6 μ = 0,6

0,45 0,3

μ = 0,4 μ = 0,4
ˆ
GPHd

ˆ
GPHd

ˆ
GPHd

Tableau 06: simulation des processus ARFIMA(1,d,0) pour la taille 

d'échantillon N=300. 
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Notre applicationestorientée, principalement, dans une optique 

prévisionnelle. Ainsi, nous utilisons des critères de prévision comme 

éléments de comparaison entre les différents modèles estimés. Par ces 

applications nous mettons en évidence la capacité prédictive des 

processus à mémoire longue, en particulier sur des horizons de 

prévision de moyen et long terme. Cette application est réalisée sur 

des données climatiques relatives à la température de l'air dans la ville 

Alger. 

Présentation des données: 

Dans ce paragraphe, on s'intéresse à la série chronologique de type 

climatique: la série journalière de la température de l'air relevée à 

Alger, du premier janvier 2012 au 31 décembre 2013. Les 

températures sont en degrés Fahrenheit et la valeur de chaque jour 

correspond à la moyenne journalière des températures prise toute les 3 

heures. 

On note pour cette série par (tempalgt)t dont une représentation 

graphique est donnée par la figure 01. 
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Nous allons modéliser cette série en utilisant de manière compétitive 

deux approches différentes. La première approche est basée sur une 

modélisation linéaire à mémoire courte de type ARIMA, et la seconde 

approche est basée sur une modélisation  à mémoire longue de type 

ARFIMA.De plus, pour chacune de ces deux approches, nous 

étudierons l'impact en prévision des différents modèles estimés. 

Pour chaque modèle, on compare les capacités prédictives à l'aide du 

critère de la racine carré de l'erreur quadratique moyenne de prévision, 

noté RMSE ("RootMeanSquaredError"). Ce critère est défini comme 

suit: 

RMSE =  
1

h
 (Xt+i − X t i )²

h

i=1

 

Où h est l'horizon de prévision et X t(i) est la valeur prédite de Xt+i 

Pour chaque approche, les prévisions sont calculées pour h=1, 3 et 6. 

 

 

 

 

Première approche: 

Dans cette première approche, nous utilisons la méthode classique de 

modélisation et de prévision de Box et Jenkins (1970). Et pour étudier 

la stationnarité de cette série on effectue le test de Dickey Fuller 

augmenté (ADF). Les résultats sont présentés dans le tableau suivant: 

Figure 01:  Evolution de la série journalière de température de l'air à Alger 
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Tableau 07: test ADF sur la série des températures de l'air de la ville 

d'Alger 

D'après ce tableau on remarque que le coefficient de la tendance 

(modèle 01) est non significatif au seuil statistique 5%, et la constante 

n’est pas significative au même seuil (modèle 02), et la série n'est pas 

stationnaire dans le modèle 03où il n’y a ni tendance ni constante. 

Après la différentiation première de la série, on procède au test de 

racine unitaire. La  valeur estimée de la statistique ADF (qui 

correspond à la t-statistique du coefficient de tempalg(-1)) est égale à  

-21.1114, cette valeur est inférieure à la valeur critique -1.95 au seuil 

statistique de 5% (modèle 04). En rejette en conséquence l'hypothèse 

nulle de présence d’une racine unitaire. Donc la série D(tempan(-1)) 

est stationnaire (intégrée d'ordre 1).  

Après le passage par les quatre étapes de la méthodologie de Box et 

Jenkins, à savoir l'identification, l'estimation, la validation et la 

prévision, on retient le modèle ARIMA(1,1,1) pour la série 

∆(tempalgt) qui s'écrit  comme suit : 

(1 − 0.655B)(1 − B) tempalgt = (1 − 0.885B)εt  

Les résultats relatifs à la qualité des prévisions obtenues à partir de ces 

deux modèles sont contenus dans le tableau 08. 

Modèles d coefficients valeur Stat observée Probabilité 

Modèle avec 

tendance et 

constante 

0 ADF - -2.91951 0.1575 

Trend 0.00054 0.50906 0.6110 

C 0.76594 2.47546 0.0138 

Tempalg(-1) -0.04960 -2.91951 0.0037 

Modèle sans 

tendance 

avec constante 

0 ADF - -0.93263 0.4261 

C 0.00131 0.74091 0.1064 

Tempalg(-1) -0.04653 -0.93263 0.0036 

Modèle sans 

tendance 

sans constante 

0 ADF - -1.0882 0.5472 

Tempalg(-1) -1.10347 -1.0821 0.0048 

Modèle sans 

tendance 

sans constante 

1 ADF - -21.1114 0.0000 

D(Tempalg(-1)) -1.10348 -21.1114 0.0000 
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Deuxième approche: 

On s'intéresse maintenant à une approche longue mémoire de cette 

série journalière des températures de l'air, à l'aide d'un processus 

ARFIMA. 

Dans un premier temps, on suppose que les ordres p et q des 

polynômes autorégressif et moyenne mobile sont nuls. On estime alors 

le paramètre de mémoire longue par la méthode GPH présentée 

précédemment, et nous prenons en considération la valeur de μ,(ici 

comme la taille de l’échantillon est petite n=365, nous prenons 

μ = 0.4). On obtient le processus ARFIMA(0,d,0) suivant: 

(1 − B)0.6167 tempalgt = εt  

Dans une seconde étape, on cherche à spécifier correctement les 

ordres des parties, autorégressive et moyenne mobile de ces deux 

processus. Pour cela, on effectue une recherche de p et q (étape 

identification de la méthode Box et Jenkins), puis on passe à l'étape 

d'estimation des paramètres. On retient un processus de type 

ARMA(1,0) de la série qui s'écrit de la forme suivante: 

(1 − 0.122B)(1 − B)0.6167 tempalgt = εt  

On remarque d’après l’estimation que le paramètre de mémoire longue 

d  estimé est superieur à 0.5, or l’intervalle du paramètre d’intégration 

fractionnaire d’un processus ARFIMA à mémoire longue est [-

1/2,1/2[. 

Dans ce cas-là, le processus considéré est alors non stationnaire. Donc 

on peut différencier la série, de manière à ce que le paramètre de 

mémoire longue soit dans  −0.5,0.5 . cette méthode considère 

uniquement le problème de l’estimation des paramètres, et elles ne se 

place pas d’un point de vus prévisionnel. Laurent FERRARA dans sa 

thèse de doctorat, a montré de manière empirique que le modèle qui 

correspond au processus ARFIMA non stationnaire, donne des 

prévisions qui convergent lentement vers la moyenne non 

conditionnelle du processus. Par contre les prévisions issues des 
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modèles ARFIMA des séries différencier ne converge pas. Donc, 

garder les données brutes, même en cas de non stationnarité, constitue 

une meilleure approche d’un point de vue de prévisionnelle. 

On continue, alors,  la procédure de prévision du modèle ARFIMA 

dans ce cas et voir sa qualité prédictive.    

Les résultats relatifs à la qualité des prévisions sont dans le tableau 

suivant : 

Modèle Critère 
Horizon 

h = 1 h = 3 h = 6 

ARIMA(1,1,1) 
RMSE 

 

1.3724 1.6077 1.7143 

ARFIMA(1, 

0.616, 0) 

1.4117 1.4170 1.4170 

Tableau 08: résultats relatifs à la qualité des 

prévisions de la série de température de l'air de 

la ville d’Alger à partir des processus ARIMA 

et ARFIMA. 

Dans un but de comparaison des résultats de prévision des deux 

modèles choisies, on observe d'après le tableau 08, que sur un horizon 

de prévision de court terme (h = 1), le modèle à mémoire courte de la 

série (tempalgt)t est plus précis que le modèle ARFIMA. Par contre, 

lorsque l'horizon de prévision augmente (h = 3, h = 6), le modèle 

ARFIMA améliore leur performance, et il est plus précis que le 

modèle à mémoire courte.  

Conclusion : 

Dans ce papier nous avons concentré notre travail sur une méthode 

d'estimation du paramètre d'intégration fractionnaire,à savoir, la 

méthode de Geweke et Porter-Hudak.Ce travail a été fait 

essentiellement par une étude théorique basée sur des simulations des 

différents processus de type ARFIMA(p,d,q). 

L'idée est d'étudier la convergence et la divergence de ces méthodes et 

leurs pouvoirs d'estimation. Pour cela, on a simulé plusieurs processus 

ARFIMA avec plusieurs valeurs de d, puis on est passé à l'estimation 
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par la méthode GPH en premier lieu pour plusieurs valeurs du nombre 

de fréquences m (m=T
μ
;  μ=0.4, 0.5, 0.6). On a déduit,pour les 

résultats d'estimation des processus purs (ARFIMA(0,d,0)), que le 

biais de l'estimateur d GPH  est toujours petit, et l'estimateur d GPH  dans 

ce cas ne dépend ni de la taille d'échantillon, ni du nombre de 

fréquences utilisées. Et pour les processus mixtes (présence de 

mémoire courte) avec différentes valeurs du paramètre autorégressif 

(respectivement moyenne mobile), la première remarque qu'on peut 

souligner est le fort biais dans l’estimation du paramètre de longue 

mémoire des processus ARFIMA(1,d,0) et ARFIMA (0,d,1), en 

particulier lorsque la valeur du coefficient AR ou MA est proche de 

1 ; ceci même sur des échantillons de grande taille. La deuxième 

remarque tirée de ces estimations est que l’estimateur du paramètre d 

est sensible aux choix du nombre de fréquence m par rapport à la taille 

de l’échantillon. 

Ensuite nous avons présenté une application des processus à mémoire 

longue ARFIMA sur des données réelles de type climatique.L’étude 

de ces séries était orientée essentiellement dans une optique 

prévisionnelle, où on a comparé les capacités prédictives des 

processus à mémoire longue contre les processus à mémoire courte sur 

des horizons de prévision court, moyen et long terme. 

Les résultats présentés sur les deux précédentes applications 

soulignent l’intérêt des processus ARFIMA, lorsqu’on désire effectuer 

des prévisions sur une série chronologique. En comparant avec les 

résultats obtenus en prévision par les processus à mémoire courte, les 

processus à mémoire longue sont performants sur un horizon moyen et 

long terme. Cependant, si on désire obtenir des prévisions à court 

terme ( h=1 par example), il semble que les processus à mémoire 

courte soit plus efficace. 
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