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Résumé - Le présent travail, concerne la stabilité magnétique de la convection de Marangoni qui se développe 

lors du processus de croissance cristalline par la technique de Czochralski. Une cavité cylindrique similaire à 

celle de Czochralski de rapport de forme Ar = H/Rc = 2, remplie du Silicium liquide a été considérée. La cavité 

est chauffée latéralement à Tc, et un tiers du couvercle de rayon rs (cristal solidifie) est refroidi à la température 

Tf. Par ailleurs le reste du couvercle est considéré comme une surface libre. Le système physique considéré est 

exposé à un champ magnétique externe uniforme appliqué suivant la direction axiale du cylindre. La méthode 

des volumes finis a été utilisée, pour la résolution numérique des équations gouvernantes. Les résultats obtenus 

sont comparés avec ceux des travaux expérimentaux disponibles dans la littérature. L’effet du nombre de 

Marangoni sur la structure de l’écoulement et le champ thermique a été présenté et discuté, pour Ma = 0, 200, 

400, 600, 800 et 1000. L’effet de champ magnétique axial sur la stabilité de l’écoulement est pris en compte 

pour Ha = 0, 25, 50, 75 et 100. Les résultats obtenus montrent que le champ magnétique appliqué selon la 

direction axiale entraîne des changements importants sur la structure de l’écoulement et le transfert de 

chaleur. Il engendre une diminution dans le taux de transfert thermique et un amortissement considérable 

dans le champ de vitesses, et par conséquent il stabilise la convection de Marangoni. 

Mots clés : Convection de Marangoni, Champ magnétique, Czochralski, Croissance Cristalline. 

 

Abstract - The present work deals to the magnetic stability of the Marangoni convection which develops during 

crystal growth by the Czochralski method. A similar cavity to that of Czochralski of aspect ratio Ar = H/Rc = 2, 

filled with liquid silicon has been considered. The cavity is laterally heated at Th, and a third of the cover of 

radius rs (crystal solidifies) is cooled to the temperature Tc. In addition the remainder of the lid is considered as 

a free surface. The physical system in question is exposed to a uniform external magnetic field applied in the 

axial direction of the cylinder. The finite volume method was used for the numerical solution of the governing 

equations. The results obtained are compared with those of the experimental work available in the literature. 

The effect of Marangoni number on the structure of the flow and the thermal field has been presented and 

discussed, for Ma = 0, 200, 400, 600, 800 and 1000. The axial magnetic field effect on the stability of the flow is 

taken into account for Ha = 0, 25, 50, 75 and 100. The obtained results show that the magnetic field applied in 

the axial direction provides significant changes in the structure of the flow and heat transfer. It causes a 

reduction in the heat transfer rate and a considerable damping in the velocity field, and therefore stabilizes the 

Marangoni convection. 

Keywords: Marangoni convection, Magnetic field, Czochralski, Finite volume method. 

 

 

 

 

  

    

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

    
I I S S S S N N 

    
2 2 1 1 7 7 0 0 

    
- - 
    
0 0 7 7 3 3 7 7 

  
  
  

               
Volume 2Décembre 

     
2 2 0 0 1 12 

    
  
  
  R R e e v v u u e e 

    
d d e e s s 

    
S S c c i i e e n n c c e e s s 

        e e t t 
    
S S c c i i e e n n c c e e s s 

    
d d e e 

    
l l ’ ’ I I n n g g é é n n i i e e u u r r 

        
  

  
  

  

Publication  d e l’Université Amar TELIDJI de Laghouat -Algerie  



A. ATTIA et al./RSSI, Vol. 5, N°. 01, Juin (2015) 24-30 

I. Introduction 

La technique de Czochralski est largement 

utilisée dans le monde pour produire des barres 

monocristallines avec une grande taille qui sont 

préférés pour la fabrication de dispositifs 

électroniques et optiques [1]. La croissance 

cristalline d’un métal liquide par la technique de 

Czochralski est sujette à des mouvements de 

convection qui la plupart du temps altèrent la 

qualité des cristaux où elles engendrent une 

répartition non uniforme des impuretés dans la 

phase liquide, ce qui conduit à l'apparition des 

striations dans le cristal [2]. Ces mouvements sont 

généralement génères soit par des forces de 

volume induites par le gradient de température 

dans le fluide (convection naturelle), soit par des 

forces de surface causées par la variation de la 

tension superficielle qui résulte du gradient 

thermique à la surface libre. Dans un bain fondu à 

surface libre avec gradient de température, les 

forces de tension superficielle entrainent 

l’écoulement des zones à faibles tension 

superficielles aux régions à fortes tensions 

superficielles, c’est la convection de Marangoni 

(dite aussi thermocapillaire).  L’importance du 

phénomène de la convection de Marangoni ainsi 

que ses effets sur la qualité des cristaux produits 

sont l’origine de plusieurs travaux [3-5].  

Pour contrôler les mouvements convectifs et 

éliminer les instabilités, l'une des solutions 

envisagées est l'application d'un champ 

magnétique [6-8]. L'effet de la convection de 

Marangoni sur la croissance des cristaux de 

nombre de Prandtl (Pr) élevé de liquides a fait 

l'objet de nombreuses études [9,10]. En revanche, 

les effets de la convection de Marangoni sur les 

fluides de faible Pr en présence du champ 

magnétique, tels que le silicium (Si), n'ont pas été 

suffisamment étudiées. Pour cela, l’objectif de ce 

travail est d’étudier l’effet de la convection de 

Marangoni sur le champ de vitesses et de 

température d’un fluide à faible nombre de Prandtl 

(silicium, Pr = 0.011). Ensuite nous examinons 

l’effet de différentes intensités du champ 

magnétique axial sur la convection de Marangoni. 

La présente étude paramétrique a été faite pour 

différents nombres de Marangoni (0 ≤ Ma ≤ 1000), 

et différents intensités du champ magnétique                      

(0 ≤ Ha ≤ 100).  

II. Problème physique et mathématique 

Le problème physique considéré est constitué 

d'une cavité cylindrique verticale (Fig. 1) de 

hauteur H et de rayon Rc avec un rapport de forme 

Ar = H/Rc = 2 (similaire à celle utilisé dans la 

technique de croissance par la méthode de 

Czochralski [11]). La cavité est remplie par un 

métal liquide (Pr = 0.011). Le tiers du couvercle 

qui représente le cristal solidifie est maintenu à la 

température froide Tf, alors que le reste du 

couvercle est considéré comme une surface libre 

plate et soumise à une tension superficielle varier 

linéairement avec la température suivant la loi : 

))(1(0 fTT  

                                             

(1) 

Avec )/)(/1( 0 T 

 

est le coefficient de 

température dû à la tension superficielle.  La paroi 

latérale de cavité maintenue à une température 

chaude Tc (Tc > Tf), tandis que le fond de cette 

cavité est thermiquement isolée. Un champ 

magnétique uniforme est appliqué suivant la 

direction axiale (Bz). 

 Les paramètres physiques adimensionnels qui 

contrôlent le comportement du système sont : Le 

nombre Marangoni  /cTRMa   et le 

nombre de Hartmann cBRHa  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Géométrie et conditions aux limites            

du problème. 

 

Nous tenons en compte les hypothèses 

simplificatrices suivantes: l’écoulement est 

axisymétrique et laminaire, les propriétés 

physiques du fluide sont supposées constantes, la 

dissipation visqueuse et l’effet Joule sont 

négligeables, la surface libre est plate, 

l’approximation de Boussinesq est valable, le 

champ magnétique induit est négligeable et les 

frontières sont électriquement isolantes.  
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Les équations régissent à l’écoulement sont :  

 Equation de continuité  
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 Equation de quantité de mouvement suivant 
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 Equation d’énergie 
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Où UHaFEMr .2 représente la force de Lorentz 

adimensionnelle suivant la direction radiale. Les 

paramètres adimensionnels Gr, Pr et Ha sont 

respectivement: nombre de Grashof 
23

 cTRgGr  , nombre de Prandtl Pr  

et le nombre de Hartmann ρυσBRHa c . 

Les conditions aux limites sont données par : 

 Axe de symétrie (R = 0 et 0 ≤ Z ≤ 2) : 

U = 0, 
R

V




= 0, 

R


= 0                                              (6a) 

 Paroi latérale (R = 1  et 0 ≤ Z ≤ 2) : 

U = 0, V = 0,   = 1                                                      (6b) 

 Cristal (0 ≤  R ≤ 
3

1
 et Z = 2) : 

U = 0, V = 0 ,   = 0                                                     (6c) 

 Surface libre (
3

1
 ≤  R ≤ 1, Z = 2) :  

Z


= 0, V = 0, )(

R
Ma

Z

U








 
                            (6d)                                                              

 Paroi inferieur (0 ≤  R ≤ 1 et Z = 0) : 

U= 0, V= 0, 
Z


 =0                                                     (6e) 

III. Méthode numérique de résolution 

Les équations (2)-(5) et les conditions aux 

limites (6a-e) sont résolues en utilisant la méthode 

des volumes finis [2,11]. Le schéma de différences 

centrées de second ordre a été utilisé pour 

exprimer les flux convectifs et diffusifs à 

l’interface de chaque volume de contrôle. Le 

couplage vitesse-pression est résolu en utilisant 

l’Algorithme SIMPLER [12]. Dans le but de 

comprendre ce qu’il est produit aux couches de 

Hartmann, et en prenant en considération la loi de 

variation de leurs épaisseurs, on a raffiné le réseau 

de maillage près des parois selon une progression 

géométrique de raison 1.05 dans la direction R et 

1.05 dans la direction Z. Ensuite, plusieurs 

maillages non uniformes resserrés près des parois 

de la cavité où des forts gradients de vitesse et de 

température existent ont été testés. 

IV. Résultats et discussion 

Dans cette partie, nous allons intéresser à la 

présentation des résultats de nos simulation 

numérique qui traduisent la solution numérique 

des équations aux drivées partielles de notre 

modèle mathématique, associé avec les conditions 

aux limites. 

1. Validation de code du calcul 

Afin d’élaborer une comparaison des résultats 

obtenus par nos simulations numériques avec des 

études expérimentales, et pouvoir donner des 

interprétations aux phénomènes observés, il est 

utile de valider au préalable notre code de calcul. 

La comparaison de notre code de calcul est 

faite avec les mesures expérimentales de Karcher 

et al. [13], concernant la convection naturelle d’un 

métal liquide (Pr = 0.0203) dans une cavité 

similaire de Czochralski avec un rapport de forme 

Ar = 4.125. La Figure. 2 présente la distribution de 

la vitesse radiale U à R = 0.25 où  Ha = 0. On 

constate aisément que les valeurs calculées sont en 

excellent accord avec les mesures dans le champ 

d’écoulement entier à l'exception de la région 0 ≤ Z 

≤ 0.6 où des légères déviations peuvent être 

trouvées. Ceci peut être expliqué par les conditions 

expérimentales (non pas idéales comme les 

expériences numériques). 
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Fig.2: Comparaison avec le travail expérimental 

de Karcher et al. [13]. 

 

2.  Effet de l’espacement du maillage 

Afin de tester l’effet de l’espacement du 

maillage sur nos résultats numériques, nous avons 

examiné quatre maillages raffinés aux parois. Sur 

la Figure. 3, nous avons présenté la vitesse radiale 

et axiale maximale (Umax et Vmax), pour les quatre 

maillages : 45×90, 60×120, 75×150 et 90×180. On 

constate une faible différence entre les deux 

maillages condensés 75×150 et 90×180, pour cela 

nous avons choisi le maillage 75×150 pour tous les 

calculs en tenant compte le temps de calcul et la 

précision des résultats. 
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Fig.3: Profils de la vitesse maximale radiale 

Umax et axiale Vmax à R = 0.50, pour différentes 

densités de maillage. 

3. Effet du nombre de Marangoni 

 Pour voir l’effet du nombre de Marangoni sur 

la structure de l’écoulement et le transfert 

thermique, nous avons fixé le nombre de Grashof à 

Gr = 104 et nous faisons varier la valeur de la 

tension superficielle (surface libre) de tel sorte que 

(Ma) prend les valeurs suivantes: Ma = 0, 200, 400, 

600, 800 et 1000. Sur la  Figure. 4, nous avons 

présenté les isothermes et les lignes de courant, 

pour différents nombres de Marangoni. 

Pour les lignes isothermes on constate qu’ils 

sont presque parallèles au disque supérieur 

(cristal). Ce qui signifie que le mode de transfert 

de chaleur par conduction est dominé. 

L’augmentation de (Ma) augmente les courbures 

de ces lignes à cause de l’accélération des 

particules fluides dans la cavité. Pour les lignes de 

courant, à Ma = 0, on remarque que l’écoulement 

se caractérise principalement par une grande 

cellule occupante totalement la cavité et qui tourne 

dans le sens inverse des aiguilles d’une montre ce 

qui signifie que l’écoulement est du type 

convection naturelle de faible intensité. 

En augmentant la valeur du nombre de 

Marangoni (Ma > 0), le sens de l’écoulement reste 

le même mais avec un vortex très intense et 

concentré autour d’un point plus proche de la paroi 

inférieur. En suivant le sens de l’écoulement, on 

peut dire que cet écoulement est dû aux différences 

de température Tc et Tf (convection naturelle), mais 

on constate que le vortex principal prend une 

structure différente de celle du premier cas discuté 

ci-dessus. Ceci est dû à un phénomène autre que la 

convection naturelle. Ce phénomène influe 

directement sur la surface libre et provoque un 

gradient de vitesse normale à cette surface, c’est la 

convection de Marangoni ou thermocapillaire qui 

domine dans ce cas. Un autre vortex faible apparaît 

(Ma ≥ 600) proche de la paroi chaude qui tourne 

dans le sens inverse montre un cas intermédiaire 

entre un écoulement dominé par la convection 

naturelle et un écoulement dominé par la 

convection de Marangoni (les deux phénomènes 

participent à constituer cet écoulement). 

Nous remarquons également que la variation de 

la vitesse axiale le long de l’axe Z (Fig. 5) est 

négative. Ceci démontre que le sens de 

l’écoulement près de l’axe de symétrie (R = 0) est 

dans le sens inverse de Z, où la vitesse augmente 

avec l’augmentation de nombre de Marangoni. Sur 

la Figure. 6, nous avons présenté le nombre du 

Nusselt moyen, pour différents nombres de 

Marangoni. On peut voir clairement que 

l’augmentation du nombre de Marangoni 

provoque une augmentation de taux de transfert 

thermique. 
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       (a)          (b)         (c)         (d)         (e)         (f) 

Fig. 4: Lignes isothermes (haut) et les lignes de 

courant (bas) pour différents nombres de 

Marangoni (a: Ma = 0, b: Ma = 200, c: Ma = 400, 

d: Ma = 600, e: Ma = 800, f: Ma = 1000). 
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Fig. 5: Profils de la composante de vitesse axiale V   

(à R = 0), pour différents nombres de Marangoni. 

4. Effet du champ magnétique 

Dans cette partie, nous voulons voir l’effet du 

champ magnétique axial sur le phénomène en 

question (convection de Marangoni), pour cela 

nous allons fixer le nombre de Marangoni à Ma = 

200, et appliquer un champ magnétique uniforme 

suivant la direction axiale (BZ) sur le système pour 

différentes intensités de Ha = 0, 25, 50, 75 et 100.    
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Fig. 6: Nombre de Nusselt moyen Numoy pour 

différents nombres de Marangoni. 

 

Sur la  Figure. 7, nous avons présenté les lignes 

de courant pour différents nombres de Hartmann, 

nous constatons clairement que le champ 

magnétique a un effet important sur les 

caractéristiques de l’écoulement. La cellule 

principale prend une forme uniforme (idéale) au 

cœur de la cavité. Ceci est montré par la 

décélération de la vitesse du métal liquide comme 

le montre sur la  Figure. 8. On constate également 

une diminution importante de la vitesse lorsque le 

nombre de Hartmann augmente. 

    

 

    

 
      (a)          (b)           (c)          (d)           (e)          

Fig. 7: Lignes isothermes (haut) et les lignes de 

courant (bas) pour différents nombres de 

Hartmann  (a: Ha = 0, b: Ha = 25, c: Ha = 50, d: 
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Ha = 75, e: Ha = 100). 

 

Pour les isothermes, on remarque que 

l’application du champ magnétique comprime les 

isothermes vers le cristal, ce qui montre la 

réduction du taux de transfert de chaleur par 

convection (Fig. 9). En peut voir clairement que 

l’augmentation du nombre de Hartmann provoque 

une diminution de taux de transfert thermique. 

Ceci est dû aux forces électromagnétiques qui 

influent sur les particules fluides en action 

apposant. 
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Fig. 8: Profils de la composante de vitesse axiale V   

(à R = 0), pour différents nombres de Hartmann. 
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Fig. 9: Nombre de Nusselt moyen Numoy, pour 

différents nombres de Hartmann. 

V. Conclusion 

Une étude numérique de la stabilité magnétique 

de la convection de Mrangoni est présentée. Les 

résultats obtenus montrent que: 

 L’écoulement de convection stable se 

manifeste par une seule cellule de 

recirculation pour Ma = 0. 

 L’augmentation du nombre de Marangoni 

déstabilise l’écoulement et provoque une 

augmentation des vitesses et de taux de 

transfert thermique.  

 L’application d’un champ magnétique axial 

sur la convection entraîne des 

changements importants sur la structure de 

l’écoulement et le transfert de chaleur. Il 

engendre une diminution dans le taux de 

transfert thermique et amortisse 

considérablement le champ de vitesses, et 

par conséquent il stabilise la convection de 

Marangoni. 
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Nomenclature 

Ar : rapport de forme  

B : intensité de champ magnétique, T 

FEMr : force de Lorentz suivant R  

g : accélération de la pesanteur, m. s-2 

Gr : nombre de Grashof 

Ma : nombre de Marangoni 

H   : hauteur de cylindre, m 

Ha : nombre de Hartmann 

P : pression adimensionnel 

Pr : nombre de Prandtl 

Rc : rayon du cylindre, m 

R, Z  : coordonnées méridional adimensionnelles 

T  : temperature, K 

Symboles grecs : 

α    : diffusivité thermique, m2. s-1 

β : coefficient d’expansion thermique, K-1 

ρ : masse volumique, kg. m-3 

σ : conductivité électrique, Ω-1. m-1 

  : tension superficielle, N.m-1 

υ : viscosité cinématique, m2. s-1 

θ : température adimensionnelle 

Indices : 

c : chaude 

f : froide 

0 : état de référence 
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