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Résumé : Dans cet article on étudie le produit des opérateurs de Toeplitz tronqués sur l’espace 

modèle. En 2010, Sedlock [6] a étudié ce problème en montrant que le produit de deux 

opérateurs de Toeplitz tronqués est un opérateurs de Toeplitz tronqué si et seulement si les 

deux opérateurs appartiennent à une classe particulière appelée opérateur de Toeplitz tronqué 

du type  où  , on s’intéresse aussi à la  description de C*-algèbre engendrée par 

l’opérateur de Toeplitz tronqué.  

Mot-clés : Espace modèle, Matrice de Toeplitz, Opérateurs de Toeplitz tronqués. 

Abstract: In this article, we study the product of truncated Toeplitz operators on truncated 

model space,  in 2010, Sedlock [6] studied this problem by showing that the product of two 

Toeplitz operators is a truncated Toeplitz operators truncated if and only if the two operators 

belong to a particular class called truncated Toeplitz operator of type  where , we are 

also interested in the description of C* -algebra generated by Toeplitz operator truncated. 

Keywords : Model space, Toeplitz Matrix, Truncated Toeplitz operators. 
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1-INTRODUCTION 

Les opérateurs de Toeplitz sont les plus 

étudiés et bien connus dans la théorie des 

opérateurs sur l’espace de Hardy. Les opérateurs 

de déplacement à droite et à gauche (the shift and 

the backward shift) sont des exemples simples. 

Le problème que nous allons étudier dans ce 

papier concernent la stabilité de la multiplication 

de deux opérateurs de Toeplitz et la 

commutativité du produit. 

Pour les opérateurs de Toeplitz définis dans 

l’espace de Hardy, ce problème est 

complètement résolu par Brown et Halmos. 

 Récemment, Sarason a étudié ([5]) la 

compression de l’opérateur de Toeplitz sur 

l’espace modèle. Cet opérateur est appelé 

opérateur de Toeplitz tronqué. Les opérateurs de 

Toeplitz tronqués représentent une 

généralisation des matrices de Toeplitz 

classiques. 

Bien que des cas particuliers de ces 

opérateurs sont apparus dans la littérature, la 

théorie générale a commencé dans [5] en 2007. 

A partir de ce moment, la théorie des opérateurs 

de Toeplitz tronquées devient un domaine de 

recherche intéressant, voir par exemple [3]. 

Concernant les opérateurs de Toeplitz 

tronqués, notre problème s’avère difficile à 

résoudre. En 2010, Sedlock [6,7] a étudié ce 

problème en montrant que le produit de deux 

opérateurs de 

Toeplitz tronqués est un opérateurs de 

Toeplitz tronqué si et seulement si les deux 

opérateurs appartiennent à une classe 

particulière appelée opérateur de Toeplitz 

tronqué du type  . 

 

On note par  le disque unité,  le cercle 

unité du plan complexe  ,    la 

mesure de Lebesgue normalisée sur   et 

 l’espace de Lebesgue usuel sur  

. 

L’espace de Hardy   est l’espace des 

fonctions analytiques    sur le 

disque unité telle que la norme  

     

est finie. 

D’après le théorème de Fatou (voir [1]) chaque 

fonction   admet une unique 

limite radiale: 
 

Sur  l'espace de Hardy est défini par:  

 

 muni de la norme de  . 

L’application: 

 

est un isomorphisme isométrique.   
 est un espace de Hilbert muni du produit 

scalaire   

On 

note par  la projection orthogonale de 

 sur . 

 est un espace à noyau reproduisant. En 

effet,  pour chaque  , l’application: 

 

est linéaire continue. Donc, il existe (d’aprés le 

théorème de représentation de Riesz ) une 

unique fonction  telle que 

  pour tout  

Le noyau reproduisant de  noté  est 

donné par la formule : 

 

Donc la projection orthogonale  de  sur 

  est exprimée par: 

 

ou   désigne le produit scalaire sur   

2-ESPACES MODELES 

Une fonction   est dite intérieure si 

 presque partout sur . 

 Soit   l’opérateur de 

déplacement à droite (shift operator) défini 

par: 

 

Et soit  l’adjoint de  (the 

backward shift) défini par: 

 

D’aprés le théorème de Beurling, les sous 

espaces fermés non-nul de  qui sont 

invariants par  sont de la forme  pour 

une certaine fonction intérieure . Il 

s’ensuit que les sous espace fermés non nul 

de , invariants par  sont de la forme: 

 

pour une certaine fonction intérieure  

(voir [4]).  
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Le sous espace  est appelé  l’espace modèle 

correspondant à la fonction . 

Définition 2.1 [4] 

Si u est une fonction intérieure, l'espace modèle 

 est l'ensemble des fonctions  

telles que  presque partout sur  pour 

une certaine fonction . Autrement 

dit,  . 

En effet, pour chaque , nous avons  

Puisque  presque partout sur , alors 

 si et seulement si  

Pour chaque fonction intérieure , l'espace 

modèle  correspondant est un sous-espace 

fermé de  et on note par  la projection 

orthogonale de  sur . 

Si  est la projection de  sur , on note par 

 et   la multiplication par  et  

respectivement alors  est la 

projection sur 

 et donc, la projection 

 

Comme dans le cas de , chaque  est un 

espace à noyau reproduisant et le noyau 

reproduisant est donné par : 
 

Proposition 2.1 

Si  alors  est tout simplement 

l'ensemble des polynômes de degré  à 

coefficients  dans  . C'est-à-dire: 
 

Notons que  est de dimension finie si  est un 

produit de Blaschke d'ordre fini. 

Proposition 2.2 

Soit  

Si  est un produit de 

Blaschke d'ordre fini avec des zéros deux à 

deux distincts   , alors 

Pour chaque fonction intérieure , les 

compressions de  et  sur  sont notées 

respectivement par   et . 

2-1.L’opérateur de conjugaison 

Soit  un espace de Hilbert sur . Un opérateur 

de conjugaison sur  est un opérateur  

 vérifiant :   
       

      
Un opérateur  défini sur  est dit complexe - 

symétrique s'il existe un opérateur de 

conjugaison  sur  tel que  

Dans ce cas, on dit que  est C-symétrique. 

Chaque espace modèle  admet un opérateur 

de conjugaison (voir [2])  

défini par : 
        

 (1) 

Dans ce qui suit, l'image de chaque  par la 

conjugaison  définie dans la relation (1) est 

notée   c'est-à-dire   

Nous rappelons ici quelques résultats concernant 

les noyaux reproduisant et l'opérateur de 

conjugaison. 

Pour chaque  on a: 

 
En particulier, si  

 

 pour tout    

3-OPERATEURS DE TOEPLITZ 

TRONQUES 

Définition 3.1[5] 

Soit  une fonction dans  l'opérateur de 

Toeplitz tronqué de symbole  sur   est 

défini par:   

L'adjoint  de  est l'opérateur de 

Toeplitz tronqué de symbole  

L'ensemble des opérateurs de Toeplitz tronqués 

sur   est noté par   

Les opérateurs de Toeplitz tronqués sur   sont 

C-symétriques par rapport à la conjugaison 

. 

Les opérateurs  et  sont des opérateurs de 

Toeplitz tronqués de symbole respectif  et  

 Autrement dit,   et . 

3-1.Matrice d'un opérateur de Toeplitz 

tronqué 

La matrice d'un opérateur de Toeplitz tronqué est 

définie par:  ou les 

 sont les coefficients de Fourier du symbole 
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3-2.Les opérateurs de Toeplitz tronqués de 

rang 1  

Soient  un espace de Hilbert sur  et 

. On définit le produit tensoriel de  et  par: 
 

 Le produit tensoriel est un opérateur de rang 1 

sur . 

Théorème 3.1 (Sarason )[5] 

 Pour  

i) les opérateurs  et  sont des 

opérateurs de Toeplitz tronqués de symbole 

respectif   et  

ii)  les opérateurs  et  sont des 

opérateurs de Toeplitz tronqués de rang 1, 

iii) Si  admet une dérivée angulaire au sens de 

Carathéodory au point  alors  

est un opérateur de Toeplitz tronqué de rang 

1, 

iv) Les seuls opérateurs de Toeplitz tronqués de 

rang 1 sont des multiples des opérateurs 

définis dans (1) et (2). 

Définition 3.2[6] 

Pour  , on définit l'opérateur  par: 

 

3-2.Les opérateurs de Toeplitz tronqués du 

type  

En 2010, Sedlock a introduit la notion 

d'opérateur de Toeplitz tronqué du type  [6] 

qui est défini comme suit: 

Soit  Un opérateurs de Toeplitz tronqués 

 est dit de type  si et seulement s’il existe 

  telle que:  

 

  Avec la convention  et  si 

 est du type  alors  est du type  

Et si , on dit que  est du type 

holomorphe. Si , on dit que  est du 

type anti-holomorphe. 

On note par  l'ensemble des opérateurs de 

Toeplitz tronqués du type . 

Dans [6,7], Sedlock a généralisé les résultats de 

Brown et Halmos pour répondre à la 

question: "Pour quel type de  et  a-t-on 

 est un opérateur de Toeplitz 

tronqué?". Nous rappelons ici les résultats de 

Sedlock. 

Théorème 3.2 (Sedlock) [6] 

Pour , on a: 

  

i)  , le commutant de . 

ii)  est une algèbre commutative fermée. 

iii)  si et seulement si . 

iv) Si  est inversible alors . 

v)  Deux opérateurs de Toeplitz tronqués  et 

 commutent si et seulement 

s'appartiennent à une même classe  pour un 

certain , et dans ce cas, le produit 
 

vi) Si  alors 

 ou  désigne l'opérateur 

identité sur . 

vii) Pour chaque , la classe est une sous-

algèbre maximale contenue dans  

4-DEMONSTRATION DU THEOREME 

DE SEDLOCK PAR LA METHODE 

MATRICIELLE 

La méthode utilisée par Sedlock montre 

seulement l'existence de  mais dans cette 

méthode, nous avons obtenu une formule 

explicite de  dans le cas ou  

Rappelons que pour  et  , la 

famille  est une base 

orthonormée de  et la matrice de  

relativement à la base  n'est autre qu'une 

matrice de Toeplitz usuelle formée par les 

coefficients de Fourier de la fonction . 

Théorème 4.1 

Soient  et  deux matrices de Toeplitz. Le 

produit  est une matrice de Toeplitz si 

et seulement si l'une des conditions suivantes 

est vérifiée: 

i)  et  sont toutes les deux triangulaires 

inférieures ou triangulaires supérieures. 

ii)  ou  est un multiple de l'identité. 

iii) Il existe un  tel que  et  sont de la 

forme: 

 

 

 

Avec   
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Preuve : 

Notons  ,  

  et 

 

Par définition, 

 

 est une matrice de Toeplitz si et seulement si: 

 (2) 

Nous distinguons deux cas pour la relation (3). 

1) Pour , nous avons  

 

C’est-à-dire 

 (3) 

De la relation (4), nous avons la série d’égalité: 

           (4) 

C’est-à-dire 

 

2) Pour  soit  c'est-à-dire 

 avec   nous 

avons  

 

Remarquons que pour chaque  et , nous avons 

 

C’est-à-dire 

              (5) 

En variant  dans la relation (6), nous avons 

obtenus les systèmes:  

 

 

 

 

 

Donc, pour chaque , nous 

avons  

     (6) 

S'il existe  alors on pose  et 

nous avons 

Et nous avons deux alternatives sur . 

a)   Si  alors 

 et en 

revenant dans (7) , nous avons: 

i)  pour tous , ou  

ii)  

En résumé, si  alors  et  sont toutes les 

deux triangulaires inférieures ou  est un 

multiple de l'identité.  

b)  Si   alors on a: 
 

Nous avons encore deux cas : 

i) S'il existe un  tel que  alors  

 

C’est-à-dire  
 

D’où  
 

Donc  et  sont de la même forme que la 

condition 3 du théorème. 

ii) Si  alors  est un 

multiple de l'identité. 

5- ALGEBRE ENGENDREE PAR  

 Dans cette partie, nous montrons que si 

 ou   alors la 

 algèbre engendrée par  n'est autre que  

, l'ensemble des matrices carrées d'ordre 

 à coefficients dans .  

 

39 



BENDAOUD et al./  RSSI, Vol. 04, No. 01, Décembre (2014) 35-40 

Théorème 5.1 

Si  alors  De plus, si 

 désigne la matrice de  par rapport à la base 

orthogonale   de  

alors :  

 

 ou  désigne la base canonique de  et 

 

Preuve : 

Soit   la base canonique de . Il suffit de 

remarquer que:  

 

 et  

 

 et 

 

 Le théorème précédent  a pour corollaire le résultat 

suivant, qui montre qu'on peut avoir le même 

résultat si la fonction intérieure  est un produit de 

Blaschke d'ordre  avec un seul zéro répété n-fois. 

Corollaire 5.1 

Si  alors   

(avec les mêmes notations que le théorème 

précédent). 

 

Preuve : 

Il suffit de remarquer que la transformation de 

Moebus définie par:  

 

est une transformation conforme qui envoie 0 à 

 et vis versa. 
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