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Résumeé : Dans cet article on étudie le produit des opérateurs de Toeplitz tronqués sur I’espace
modeéle. En 2010, Sedlock [6] a étudié ce probléme en montrant que le produit de deux
opérateurs de Toeplitz tronqués est un opérateurs de Toeplitz tronqué si et seulement si les
deux opérateurs appartiennent a une classe particuliere appelée opérateur de Toeplitz tronqué
du type o ou « €1, on s’intéresse aussi a la description de C*-algébre engendrée par
I’opérateur de Toeplitz tronqué.

Mot-clés : Espace modéle, Matrice de Toeplitz, Opérateurs de Toeplitz tronqués.

Abstract: In this article, we study the product of truncated Toeplitz operators on truncated
model space, in 2010, Sedlock [6] studied this problem by showing that the product of two
Toeplitz operators is a truncated Toeplitz operators truncated if and only if the two operators
belong to a particular class called truncated Toeplitz operator of type « where « € ), we are
also interested in the description of C* -algebra generated by Toeplitz operator truncated.
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1-INTRODUCTION

Les opérateurs de Toeplitz sont les plus
étudiés et bien connus dans la théorie des
opérateurs sur I’espace de Hardy. Les opérateurs
de déplacement a droite et a gauche (the shift and
the backward shift) sont des exemples simples.

Le probléme que nous allons étudier dans ce
papier concernent la stabilité de la multiplication
de deux opérateurs de Toeplitz et la
commutativité du produit.

Pour les opérateurs de Toeplitz définis dans
I’espace de Hardy, ce probleme est
complétement résolu par Brown et Halmos.

Récemment, Sarason a étudié ([5]) la
compression de D’opérateur de Toeplitz sur
I’espace modéle. Cet opérateur est appelé
opérateur de Toeplitz tronqué. Les opérateurs de
Toeplitz tronqués représentent une
généralisation des matrices de Toeplitz
classiques.

Bien que des cas particuliers de ces
opérateurs sont apparus dans la littérature, la
théorie générale a commencé dans [5] en 2007.
A partir de ce moment, la théorie des opérateurs
de Toeplitz tronquées devient un domaine de
recherche intéressant, voir par exemple [3].

Concernant les opérateurs de Toeplitz
tronqués, notre probleme s’avere difficile a
résoudre. En 2010, Sedlock [6,7] a étudié ce
probléme en montrant que le produit de deux
opérateurs de

Toeplitz trongqués est un opérateurs de
Toeplitz tronqué si et seulement si les deux
opérateurs  appartiennent a une classe
particuliére appelée opérateur de Toeplitz
tronque du type ¢

On note par ID le disque unité, T = JID le cercle
unité du plan complexe C, dm = ;j_g la
™

mesure de Lebesgue normalisée sur T et
L2(T; dm)1’espace de Lebesgue usuel sur T

L’espace de Hardy F2(Ib) est ’espace des
fonctions analytiques f : 1D — C sur le
disque unité telle que la norme
11 = swp 5= [ 1Fro)Plag

<r<l

est finie.

D’aprés le théoréme de Fatou (voir [1]) chaque
fonction f < H2(ID) admet une unique
limite radiale:

() = linrll_ f(r)m — p.partout,( € D

Sur T I'espace de Hardy est défini par:
HX(T) = {f € L¥(T) : f(n) = 0.n < 0}
muni de la norme de £2(T).

L’application:
©: H¥D) — H(T)
o — r

est un isomorphisme isométrique.
H*(ID) est un espace de Hilbert muni du produit
scalaire

<f19'>H2 ={f"9 HZ (T) = ff dm (¢)On

note par P la projection orthogonale de
L2 (ID) sur /72(I).

H*?(ID) est un espace a noyau reproduisant. En
effet, pour chaque A € [, I’application:

oy H*D) — C

foo— e =f0)

est linéaire continue. Donc, il existe (d’aprés le
théoreme de représentation de Riesz ) une
unique fonction %, € H?(ID) telle que
F(N) = (f.ky) pourtout f e I7%(D).

Le noyau reproduisant de A2(m) noté %, est
donné par la formule :

1
oa2) 1— Az
Donc la projection orthogonale P de 7.2(1) sur

H?*(Ib) estexprimée par:
P[fI(\) = (f,ky) pour tout f € H*(D)et A€ D
ou (., .) désigne le produit scalaire sur 772(I)

2-ESPACES MODELES

Une fonction « ¢ H? est dite intérieure si
|u(z)| = 1 presque partout sur T

Soit S : H? - H? [lopérateur de
déplacement a droite (shift operator) défini
par:

S[f] = zf(z) pour f€ H*et z € T

Et soit S*: H? — H? l’adjoint de S (the
backward shift) défini par:

. z)— f(0
s = {20

D’aprés le théoréeme de Beurling, les sous
espaces fermés non-nul de H? qui sont
invariants par S sont de la forme « /72 pour
une certaine fonction intérieure « ¢ H=2 Il
s’ensuit que les sous espace fermés non nul
de F72, invariants par 5 sont de la forme:

K2=H*cuH?

pour une certaine fonction intérieure H?
(voir [4])-

pour z&T

pour f € H*et z € T
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Le sous espace KE est appelé 1’espace modéle
correspondant a la fonction .

Définition 2.1 [4]

Si u est une fonction intérieure, l'espace modele
K_E est I'ensemble des fonctions 7 < 2
telles que f = wzg presque partout sur pour
une certaine fonction g € F2. Autrement
dit, K2 = H*( uzH?

En effet, pour chaque f « 72, nous avons

(f.uh) =0,h € H* & (uf.h) = 0.%h € B & Tf € 212
Puisque || = 1 presque partout sur T, alors
f € (uH?)" sietseulementsi f ¢ uzH2.

Pour chaque fonction intérieure 1w, l'espace
modeéle K_E correspondant est un sous-espace
fermé de 7.2 et on note par F, la projection
orthogonale de 7.2 sur K.

Si P est la projection de 7.2 sur 42, on note par
M, et Ay la multiplication par w# et u
respectivement alors M, PMz est la
projection sur

wll? et donc, la
P, =P — M,PMy.

Comme dans le cas de /2, chaque KE est un
espace a noyau reproduisant et le noyau
reproduisant est donné par :

E(z) = Plki)(2) = M
1— Az

Proposition 2.1

Si u(z) = =" alors K? est tout simplement
I'ensemble des polyndmes de degré n — 1 a
coefficients dans C. C'est-a-dire:

Kﬁ ={ep+az+ Ay + 4 a2 L ag a0, — 1€ c}

Notons que &> est de dimension finie si u est un
produit de Blaschke d'ordre fini.

Proposition 2.2

Soit by (z) = =2

Si u(z) = [, br.(z) est un produit de
Blaschke d'ordre fini avec des zéros deux a
deux distincts Aq; Aq; ... A, , alors

K2 {an + ai-k— (:lz?,zi +.a,,_£”71

(1= A2)(1 = Aaz).(1 = Ay2)
Pour chaque fonction intérieure u, les
compressions de S et S* sur K2 sont notées
respectivement par S, et Sr.
2-1.1’opérateur de conjugaison

Soit H un espace de Hilbert sur C. Un opérateur
de conjugaison sur / est un opérateur
C : H — H vérifiant :

i) (Cx,Cy) = (y,x)
i) C?=Idy

Un opérateur 7" défini sur #1 est dit complexe -

symétrique s'il existe un opérateur de

projection

(A\z)eDxT

105 A1 ey — 1 € C}

conjugaison ¢ sur H tel que T'= CT'C*.
Dans ce cas, on dit que 7" est C-symétrique.

Chague espace modele K2 admet un opérateur
de conjugaison (voir [2))C : K2 — K2
défini par :

Clfl(z) = u(2)2f(z) pour chaque feK? et z€T

1)

Dans ce qui suit, I'image de chaque f par la
conjugaison ' définie dans la relation (1) est
notée f ceest-a-dire f = C[f].

Nous rappelons ici quelques résultats concernant
les noyaux reproduisant et l'opérateur de
conjugaison.

Pour chaque A € 1D, on a:

~ u(z) — u(A)
kY (z) = ————, T
/\(Z) s — )\ ) (Z € )
En particulier, si u(A) =0,
~ u(z)
kY(z) = T

J?()‘) = (’%f) pour tout fe KE

3-OPERATEURS DE TOEPLITZ
TRONQUES

Définition 3.1[5]

Soit p une fonction dans £.°°, l'opérateur de
Toeplitz tronqué de symbole ¢ sur K% est
défini par:

AL(f) = Pu(ef), pour chaque f € K?
L'adjoint (AZ)* de A7 est l'opérateur de
Toeplitz tronqué de symbole 5

L'ensemble des opérateurs de Toeplitz tronqués
sur KZ est noté par T,

Les opérateurs de Toeplitz tronqués sur /2 sont
C-symétriques par rapport a la conjugaison ¢

Les opérateurs S, et S sont des opérateurs de
Toeplitz tronqués de symbole respectif z et
Z. Autrement dit, S, — A*et §* — A,

3-1.Matrice d'un opérateur de Toeplitz
tronqué

La matrice d'un opérateur de Toeplitz tronqué est
definie par: A = (a;; = a;_;)1<i j<n OU les
a; sont les coefficients de Fourier du symbole

A

ap Q-1 -+ OQ_pt1

aj ap - O_p42
A= .
Ap—1 - a (g
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3-2.Les opérateurs de Toeplitz tronqués de
rang 1

Soient /7 un espace de Hilbertsur Cetz,y € H
. On définit le produit tensoriel de x et y par:

r@y:ze H— (z,y)r € H

Le produit tensoriel est un opérateur de rang 1
sur f.

Théoréme 3.1 (Sarason )[5]

Pour A € D,

i) les opérateurs k% & k¥ et kY @ kY sont des
opérateurs de Toeplitz tronqués de symbole

Uu

Y et
z— zZ—A

respectif

i) les opérateurs kY @ kY et kY & kY sont des
opérateurs de Toeplitz tronqués de rang 1,
iii) Si 1 admet une dérivée angulaire au sens de
Carathéodory au point 77 € T alors by & Ky
est un opérateur de Toeplitz tronqué de rang

1,

iv) Les seuls opérateurs de Toeplitz tronqués de
rang 1 sont des multiples des opérateurs
définis dans (1) et (2).

Définition 3.2[6]

Pour « € D, on définit I'opérateur 5= par:

Sy = Su+ ks @ ky

1 — au(0)

3-2.Les opérateurs de Toeplitz tronqués du
type o

En 2010, Sedlock a introduit la notion
d'opérateur de Toeplitz tronqué du type « [6]
qui est défini comme suit:

Soit «» e . Un opérateurs de Toeplitz tronqués
A, estditde type o si et seulement s’il existe
o € K? telle que:

v=p+aSp+c, ceC

Avec la convention 1/0 = oo €t 1 /00 = 0, Si

A, estdu type aalors A¥ est du type 1 /av.

Et si « =0, on dit que A, est du type
holomorphe. Si v = 1, on dit que A, est du
type anti-holomorphe.

On note par B l'ensemble des opérateurs de
Toeplitz tronqués du type o

Dans [6,7], Sedlock a généralisé les résultats de
Brown et Halmos pour répondre a la
question: "Pour quel type de y et 1 a-t-on
A,A, est un opérateur de Toeplitz
tronqué?". Nous rappelons ici les résultats de
Sedlock.

Théoreme 3.2 (Sedlock) [6]

Pour o € CU {oc}, Ona:

i) Be = {S2V, le commutant de 52.

if) B2 est une algebre commutative fermée.

iii) 4 € B2 si et seulement si A € BY/“.

iv) Si A € B estinversible alors A~! € B2,

v) Deux opérateurs de Toeplitz tronques A, et
Ay commutent si et seulement
s'appartiennent a une méme classe B pour un
certain «, et dans ce cas, le produit
AB € B

vi) Si ay # az € CU{oc} alors
Ber N B2 = Cy ou I désigne l'opérateur
identité sur K2,

vii) Pour chague «, la classe est une sous-
algébre maximale contenue dans ‘T,,.

4-DEMONSTRATION DU THEOREME
DE SEDLOCK PAR LA METHODE
MATRICIELLE

La méthode utilisée par Sedlock montre
seulement l'existence de mais dans cette
méthode, nous avons obtenu une formule
explicite de « dans le cas ou u(z) = 2™,

Rappelons que pour u(z) = z" et o € .2, la
famille A = {1, 2,22, ..., 2"} est une base
orthonormée de K et la matrice de 4,
relativement a la base A n'est autre qu'une
matrice de Toeplitz usuelle formée par les
coefficients de Fourier de la fonction .

Théoreme 4.1

Soient A et /3 deux matrices de Toeplitz. Le
produit A x B est une matrice de Toeplitz si
et seulement si I'une des conditions suivantes
est vérifiée:

i) A et I3 sont toutes les deux triangulaires
inférieures ou triangulaires supérieures.

i) A ou I3 est un multiple de l'identité.

iii) Il existe un o € C tel que A et /3 sont de la
forme:

ap Gldp—1 - [0705]
A ay Qo st (X@9
Ap—1 vt aq ap
b[} (Tbn_l te Otbl
po| o
bﬂ—] e bl b(l
cha:ﬁfﬂ 0<k<n-—1.
k
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Preuve :
Notons A= (aij)lﬁi‘jﬁn = ((Iq;—j)l_gi.jg'rm
B = (bij)lﬁi,jin- - (bi—j)lﬁi-JS“ et

A% B —C = ()zigen
Par definition,

n—1
Cij = E az’kbk:j
k=0

¢’ est une matrice de Toeplitz si et seulement si:

n—1
Cij = Ci—j = Z ai—kbg—j 2)
k=0

Nous distinguons deux cas pour la relation (3).
1) Pour ¢ = 3, nous avons
n—1
Co = Z ai_pbp_; pourt=0,1,...,n— 1.
k=0
C’est-a-dire

n—1 n—1

cy = Z @by = Z Ui—g1be—jo1 pouri=0,1,...n
k=0

k=0
- s = . (3)
De larelation (4), nous avons la série d’égalité:
Aipi1bp_i1 = a1 (4)
C’est-a-dire
a_pyibp1 = aib_y
G"‘fn«I»anfQ = asb_s
a_1by = Up_1b_py1

2) Pour i 4, soit [ =i—j Cclesta-dire
j=1i—1 avec |l{|=1,....,n—2, nous
avons

n—1
Ci—j =0 = Z Qi—kbr—ivi
k=0
Remarquons que pour chaque 7 et /, nous avons

n—1 n—1
E (l-z'—kbk—iﬂ = E fl-fi.—k+1bk44+l
k=0 k=0

C’est-a-dire
Ai—nt10n—1—iy1 = @ip1b_1ip )
En variant { dans la relation (6), nous avons
obtenus les systemes:

asb_1 = a_ppaby
asb_o = a_py2b, 2
a2b—n+1 = a—n+2bl

4

arb_1 = a_ppibyy
atb_y = a_py1b,o
L ay b—n+1 = a—n-{—lbl
4
an1b_y = a_ib,
a_pi2b, 2 = asb, o
L ap_1b_pi1 = a_1b

Donc, pour chaque i< {0,1,...,n}, nous
avons

ab_y = a_pyiby
a;b_y = O_piq br—2
(6)
aib—n+1 = a—n-{—ibl
-2 i A—_n+ig
S'il existe @, # 0 alors on pose 3 = ——— et
Qg

nous avons

boy= B0y 1, bog=Pby 2, ....0 41 =0b
Et nous avons deux alternatives sur /.

a) Si 8=0 alors
boi=bos=..=b_,1=0 e en
revenant dans (7) , nous avons:

1) a_,+1 =0pourtousi € {0,1,...,n},0uU

iyby=by=...=b,=0

Enrésumé, si 3 = (0 alors A et I3 sont toutes les
deux triangulaires inférieures ou I3 est un
multiple de l'identité.

b) Si 3 # 0 alorsona:

boy=p0by 1, bo=pbya, .., bont1 = by

Nous avons encore deux cas :

i) S'il existe un s tel que b,,_, + 0 alors

aib—fs - a‘—:rwr-ibﬂ,—s

C’est-a-dire

B(Libn—x = UJ—nJribn—s

D’ou

A_piyi = ﬁ(},i

Donc A et B sont de la méme forme que la
condition 3 du théoréme.

i) Si by =by=...=0b, =0 alors 5 est un
multiple de l'identite.

5- C*ALGEBRE ENGENDREE PAR S«

Dans cette partie, nous montrons que Si
u(z) = 2" oU u(z) = bY(z), A € D alors la
(™ algébre engendrée par S, n'est autre que
M, (C), I'ensemble des matrices carrées d'ordre
n a coefficients dans C.
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Théoreme 5.1

Siu(z) = zralors C*(S,,) = 9,,(C). De plus, si
A désigne la matrice de S,, par rapport a la base
orthogonale A —= {1, =, :2, ..., 271} de KZ
alors :

Cij = A=A A pour 0 < 4,5 < — 1

ou (e;;) désigne la base canonique de 91, (C) et
A* = At

Preuve :

Soit (f.). la base canonique de R". Il suffit de

remarquer que:
—

LIRS

0 si k#j
ei-f(f"“){ f ¥ ki;
et

4>

«l o 0 st k<l
AR PN
et

—)

0 si k#0
argg={ Rz

Le théoréme précédent a pour corollaire le résultat
suivant, qui montre qu'on peut avoir le méme
résultat si la fonction intérieure w est un produit de
Blaschke d'ordre # avec un seul zéro répété n-fois.

Corollaire 5.1

T
. . "

Si u(z) = (_]JAZ) alors C*(S,,) = 9, (C).
(avec les mémes notations que le théoréme

précédent).

Preuve :
Il suffit de remarquer que la transformation de
Moebus définie par:
‘ Z— A
Q)A.ZI—>¢A(2) l_AA,
est une transformation conforme qui envoie 0 a
z et vis versa.
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