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Abstract : Machine tool chatter causes an instability that can occur in tool-workpiece-machine
system. Hence surface roughness and tool wear in metal cutting processes. This instability caused
by interaction between current tool positions and surface left by previous tool passes. Many
methods have been developed to minimize the effects of regenerative chatter in machine tools and
to enhance the damping capability minimizing the loss in static stiffness through implementation of
device uses PZT actuators or MR fluid. The possibility of suppressing self-excited vibrations of
boring process using parametric excitation is discussed. We consider a two-mass system of which
the main mass is excited by a self excited force (cutting force). A single mass which acts as a
dynamic absorber is attached to the main mass and, by varying the stiffness between the main mass
and the absorber mass, represents a parametric excitation.
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. INTRODUCTION

Removing high volumes of material in shorter
time as well as obtaining the right quality from
the first part produced are goals that one would
like to achieve. Tooling systems, and especially
cantilever tools, and cantilever structural units of
machine tools are the least rigid components of
machining systems and therefore the most prone
to vibration that could lead to cutting instability.
The objective of this paper is to implement
efficient damping devices based on identification
of parametric models describing the dynamic
stability of machining systems. The present paper
focuses on the design and the dynamic analysis of
damped boring bar used in internal turning. In
order to understand the principle for design of
efficient damping systems it is necessary to
understand the dynamic behavior of machining
systems. Machining systems may be represented
by a closed loop system comprising the machine
tool elastic structure, the machine tool structure
including tool, tool holder, workpiece etc., and the
cutting process, turning, milling etc., the
interaction between the machine tool’s elastic
structure and the cutting process describes the
behavior of the machining system. This behavior
directly affects the process accuracy.

State of the art in parametric excitation

All mechanical engineering systems which
undergo oscillatory motion are often described by
a finite set of governing differential equations. If
for some reason one or more parameters, such as
the mass, damping, stiffness, appear as time
varying coefficients in these equations, the system
may be said to be subjected to parametric
excitation, and this phenomenon is then called
parametric vibration[1-3].

This is one aspect that parametric vibration
differs from the familiar forced vibration, whose
coefficients in the equations are all constant. The
other difference between these two vibrations is
that parametric vibration might occur in directions
normal to the excitation, while forced vibration is
understood to appear only in directions parallel to
the excitation.

Later investigations incorporated such factors
as different elastic members, such as beams, rods,
bars, etc; and various boundary conditions, inertia
parameters, and different forms of excitations.
Dugundji and Mukhopadhyay (1973) carried out a
study on a horizontally-orientated cantilever beam

subjected to vertical harmonic excitation of its
base [4].

The equations of motion were reduced to
Mathieu equations. This caused combination
resonance, with primary instability regions
defined when exciting such that or = Q1 + ©; and
or = Q + Q3 (o is the excitation frequency. Qu,
Q> and Qs are natural frequencies of the first
bending, the second bending and the torsional
modes of the beam, respectively), with the two
modes oscillated simultaneously, each at its own
frequency Qi, Q, and Qs. This showed that lateral
bending and twist could be excited by vertical
base motion. Cartmell and Robert (1987)
theoretically and experimentally investigated the
response of a vertically-orientated cantilever
beam with an attached end mass system subjected
to a parametric excitation [5]. They also found
that the parametric excitation promoted a sum-
type combination resonance involving two modes
of vibration. Analytical studies of the
parametrically-excited pendulum can be traced
back to the work of Leven and Koch (1981). They
identified that the pendulum behaved in a chaotic
way under certain parameter intervals. Miles
(1985) analyzed the response of a double
pendulum system under a parametric excitation
through the vertical translation of the pivot of the
slower pendulum. In his work, the ratio of the
natural frequencies of the two normal modes
approximated 2. His results showed that when the
lower mode was excited by a principal parametric
resonance, the resulting motion may be either a
simple (rigid-body) translation of the entire
system or coupled oscillations of the pendulums
superimposed on such a translation [7]. Watt and
Cartmell (1994) designed a single-degree-of-
freedom parametric oscillator, onto which was
mounted a simple mechanical power take-off
device, so that the axial input motion could be
converted to a parametric resonance in the
torsional system to transfer energy to an external
load, hereby acting potentially as a mechanical
power transmission. Cartmell and Roberts (1988)
presented a study of a L-shape beam structure.
The structure comprised a horizontal beam and a
smaller vertical beam. The horizontal beam was
clamped at one end and the free end was coupled
to the wvertical beam. Two combination
resonances, involving the fundamental and second
bending modes and the fundamental torsion mode
of the structure, could be generated when the
external excitation of the support was at a
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frequency in the region of the second bending
mode frequency of the system when it oscillated
in the least stiff plane.

The growth of the amplitude of the vibrations
during parametric excitation is provided by the
force that periodically changes the parameter.
Parametric resonance is possible when one of the
following conditions for the frequency @ (or for
the period T) of modulation is fulfilled;

2w nT
w=—77, T==2
n 2

In other words, parametric resonance occurs
when the parameter changes twice during one
period, once during one period, twice during three
periods, and so on. However, the maximum
energy transfer to the vibrating system occurs
when the parameter is changed twice during one
period of the natural frequency. In this paper, we
are interested in the case, in which parametric
force has the frequency of twice the natural
frequency of the system.

n=1,23,..)

Methods of stability analysis of
excited system

parametrically

The governing equations for parametrically
excited systems are second order differential
equations with periodic coefficients, which have
no exact solutions. The researchers for a long time
have been interested to explore different solution
methods to this class of problem. The two main
objectives of this class of researchers are to
establish the existence of peri odic solutions and
their stability. When the governing equation of
motion for the system is of Matheiu-Hill type, a
few well known solution methods those are
commonly used are, method proposed by Bolotin
based on Floquet’s theory.

perturbation and iteration techniques, the
Galerkin’s method, the Lyapunov second method
and the asymptotic technique by Krylov,
Bogoliubov and Mitroploskii.

Nomenclature

wr  excitation frequency (Hz)

T  period [s]

Q  natural frequencies of boring bar [rad/s]
Mg,Mg Mass of rod and boring bar
respectively

Ks boring bar stiffness (N/m)

Kn rubber stiffness (N/m)

Kre single stiffness element (N/m)

Fc cutting force magnitude (N)

Cs,Cr damping of boring bar and rod
respectively

b chip width (m)

Ks cutting force coefficient (N/m?)
h instantaneous chip thickness (m)
ho normal chip thickness (m)

M mass matrix

C damping matrix

K stiffness matrix

Ps static load (N)
P: time component of the load (N)

I1. DESIGN OF BORING BAR
CONCEPT

Our study is based on a model for the
suppression of chatter vibrations of boring bar by
a dynamic absorber with parametric excitation
formulated in [11]. Consider a two mass system
consisting of a main mass Mg which is subject to
self-excitation vibration and an absorber mass Mg
which is attached to the main mass by a spring
element, see Figure 1. The elastic mounting Kee
of the absorber mass is a combination of a spring
and a device operating such that the stiffness Kee
is changed periodically. Damping is represented
by the linear viscous damper Cg. The main mass
Mg is supported by a spring with constant stiffness
Kg; it has a linear viscous damper with damping
parameter Cg. In actual constructions one usually
has Mg < M.

Fig. 1. Interaction between Self-excited and
Parametric Vibrations

The boring process generated self-excited force is
acting on the main mass Mg. The displacements of
mass Mg and mass Mg are denoted by the
coordinates xg and Xg, respectively. The variation
of the stiffness of the absorber element is
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supposed to be a harmonic function with small
amplitude.

Fig. 2. The schematic representation of the two
mass chain system.

This system is represented by the following
nonlinear equations of motion:

Mp X+ Crxp+ Kgr(t)xg — Ky(xg —x5) =0
@
Mg X+ Cgip + Kgxp + Ky(xg — xp) = F(1)
(2)

where: Kpp = Kz(t)
Kpe: Parametric excitation stiffness.

with: M is the mass, C is the damping, K is the
stiffness, and the right side of the equation (2)
represents the cutting force acting on the tip of the
boring bar.

Mp Xz + Cpxg + Kg (1 + ecoswt)xg — Ky(xg
—xg) =0 (3)

Mg xXp + Cpxp + Kgxp + Ky(xg — x5) = F(t)
4)
where:  Kg(t) = Kg (1 + ecoswr)

The above equations (3) and (4) can be written in
matrix form as:

M, O ]{J?R}+ Cr 0]{9’6[‘,}_’_
0 Mg]|lig 0 Cgllxg
[KR (1 + ecoswrt) + Kg —Ky ]{XR _
—Ky Kg + Ky xB} B

lr.o)

()
F.(t) = K. b. h(t) (6)

According to the low of regeneration [8] and [9]
with the thickness of the chip can be expressed

by:

h(t) = ho — [x(t) — x(t — 1)]
where t the delay time.
The motion of an n degree-of-freedom system can
be represented by a system of second-order
differential equations:
M (t) + Cx(t) + Kx (t) = f¢ (t) 7

Where xi and xjp are the displacement, fc(t) is the
excitation force, M (mass matrix), C damping
matrix) and K (stiffness matrix).

The boring bar is subjected to a pulsating axial
force P (t) = Ps + P; cos wr t, acting along its
lateral side. wr is the excitation frequency of the
dynamic load component, Ps is the static and P is
the time component of the load.
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Fig. 3. Boring bar with boundary conditions
(fixed-free).
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Fig. 4. Block diagram of the control.
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Final design

To maintain a high level of static stiffness, it
was chosen to adapt the following solution figure
3 witch use the excitation of the active part of the
tool from the back by a rod which receives
parametric excitation from shaker mounted on the
tool holder.

Fig. 6. Machining configuration
I1l. PERFORMANCE EVALUATION
Analysis method

The evaluation of the novel design compared to
the conventional tool has been carried out in two
steps: at first MOVILOG fft2 with DIVA
software has been employed to produce signals
and to extract the dynamic characteristics of the
process machine interaction. The surface
roughness has been measured after every test with
a Mitutoyo Surftest 201 and correlated to the
vibration signals.

Machining tests

The tools have been tested clamped in the
same tool holder configurations as modal analysis
with an overhang of 250 mm and a diameter of 32
mm. Round workpieces made of XC38 with a
outer diameter of 160 mm, a inner diameter of

100 mm and a length of 60 mm were machined.
The machining operations were carried out at
three different depths of cut a, 0.5mm, 1mm,
1.5mm. Keeping constant cutting speed V. at 120
m/min and feed f at 0.2 mm/tr. The effect of the
tool’s damping ratio on the machining process is
shown in figure 7 and figure 8, where the signals
produced by machining with conventional and the
damped tool (under PE and without PE)
respectively, are compared.
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Fig. 8. Signal produced by machining with
damped tool
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Fig. 9. Time record of signal produced when
machining at ve = 120 m/min f= 0.2 mm/rev and
ap=1mm.
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IV. SURFACE ROUGHNESS

The surface finish produced by the conventional
tool is of much lower quality if compared to the
one produced by the damped tool with parametric
excitation. Figure 10 shows the surface profile
taken after machining at 1 mm; the conventional
tool is not able to perform in stable conditions and
therefore the surface profile is disturbed by the
chatter marks.
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Fig. 10. Surface roughness scan. a) Conventional
tool, b) Damped tool with PE; after machining at
V=120 m/min, f=0.2mm/rev, and a,= 1mm.

Damped tool with PE

Conventional tool

Fig. 11. Photo of surface finish with chatter marks
produced by conventional tool and high quality
surface finish with damped tool with PE.
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Fig.12. Average surface roughness.

V. CONCLUSION

The stability of the linerized boring bar attached

element system is investigated by a numerical
simulations indicate that parametric stiffness
excitation has a better effect on regenerative
chatter suppression. The striking advantage of this
application presented is the fact that parametric
excitation only needs an open loop control
system. This might be very advantageous for
other applications, since it will save the cost,
weight and energy for sensors and controllers,
which might be very important in certain
applications. The results of experiments carried
out show that this new design of boring bar can be
a good solution to suppress chatter vibrations.
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