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Abstract :  Machine tool chatter causes an instability that can occur in tool-workpiece-machine 

system. Hence surface roughness and tool wear in metal cutting processes. This instability caused 

by interaction between current tool positions and surface left by previous tool passes. Many 

methods have been developed to minimize the effects of regenerative chatter in machine tools and 

to enhance the damping capability minimizing the loss in static stiffness through implementation of 

device uses PZT actuators or MR fluid. The possibility of suppressing self-excited vibrations of 

boring process using parametric excitation is discussed. We consider a two-mass system of which 

the main mass is excited by a self excited force (cutting force). A single mass which acts as a 

dynamic absorber is attached to the main mass and, by varying the stiffness between the main mass 

and the absorber mass, represents a parametric excitation.  
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I. INTRODUCTION 

      Removing high volumes of material in shorter 

time as well as obtaining the right quality from 

the first part produced are goals that one would 

like to achieve. Tooling systems, and especially 

cantilever tools, and cantilever structural units of 

machine tools are the least rigid components of 

machining systems and therefore the most prone 

to vibration that could lead to cutting instability. 

The objective of this paper is to implement 

efficient damping devices based on identification 

of parametric models describing the dynamic 

stability of machining systems. The present paper 

focuses on the design and the dynamic analysis of 

damped boring bar used in internal turning. In 

order to understand the principle for design of 

efficient damping systems it is necessary to 

understand the dynamic behavior of machining 

systems. Machining systems may be represented 

by a closed loop system comprising the machine 

tool elastic structure, the machine tool structure 

including tool, tool holder, workpiece etc., and the 

cutting process, turning, milling etc., the 

interaction between the machine tool’s elastic 

structure and the cutting process describes the 

behavior of the machining system. This behavior 

directly affects the process accuracy. 

State of the art in parametric excitation 

     All mechanical engineering systems which 

undergo oscillatory motion are often described by 

a finite set of governing differential equations. If 

for some reason one or more parameters, such as 

the mass, damping, stiffness, appear as time 

varying coefficients in these equations, the system 

may be said to be subjected to parametric 

excitation, and this phenomenon is then called 

parametric vibration[1-3]. 

This is one aspect that parametric vibration 

differs from the familiar forced vibration, whose 

coefficients in the equations are all constant. The 

other difference between these two vibrations is 

that parametric vibration might occur in directions 

normal to the excitation, while forced vibration is 

understood to appear only in directions parallel to 

the excitation. 

Later investigations incorporated such factors 

as different elastic members, such as beams, rods, 

bars, etc; and various boundary conditions, inertia 

parameters, and different forms of excitations. 

Dugundji and Mukhopadhyay (1973) carried out a 

study on a horizontally-orientated cantilever beam 

subjected to vertical harmonic excitation of its 

base [4]. 

The equations of motion were reduced to 

Mathieu equations. This caused combination 

resonance, with primary instability regions 

defined when exciting such that ωF = Ω1 + Ω2 and 

ωF = Ω2 + Ω3 (ωF  is the excitation frequency. Ω1, 

Ω2 and Ω3 are natural frequencies of the first 

bending, the second bending and the torsional 

modes of the beam, respectively), with the two 

modes oscillated simultaneously, each at its own 

frequency Ω1, Ω2 and Ω3. This showed that lateral 

bending and twist could be excited by vertical 

base motion. Cartmell and Robert (1987) 

theoretically and experimentally investigated the 

response of a vertically-orientated cantilever 

beam with an attached end mass system subjected 

to a parametric excitation [5]. They also found 

that the parametric excitation promoted a sum-

type combination resonance involving two modes 

of vibration. Analytical studies of the 

parametrically-excited pendulum can be traced 

back to the work of Leven and Koch (1981). They 

identified that the pendulum behaved in a chaotic 

way under certain parameter intervals. Miles 

(1985) analyzed the response of a double 

pendulum system under a parametric excitation 

through the vertical translation of the pivot of the 

slower pendulum. In his work, the ratio of the 

natural frequencies of the two normal modes 

approximated 2. His results showed that when the 

lower mode was excited by a principal parametric 

resonance, the resulting motion may be either a 

simple (rigid-body) translation of the entire 

system or coupled oscillations of the pendulums 

superimposed on such a translation [7]. Watt and 

Cartmell (1994) designed a single-degree-of-

freedom parametric oscillator, onto which was 

mounted a simple mechanical power take-off 

device, so that the axial input motion could be 

converted to a parametric resonance in the 

torsional system to transfer energy to an external 

load, hereby acting potentially as a mechanical 

power transmission. Cartmell and Roberts (1988) 

presented a study of a L-shape beam structure. 

The structure comprised a horizontal beam and a 

smaller vertical beam. The horizontal beam was 

clamped at one end and the free end was coupled 

to the vertical beam. Two combination 

resonances, involving the fundamental and second 

bending modes and the fundamental torsion mode 

of the structure, could be generated when the 

external excitation of the support was at a 
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frequency in the region of the second bending 

mode frequency of the system when it oscillated 

in the least stiff plane. 

The growth of the amplitude of the vibrations 

during parametric excitation is provided by the 

force that periodically changes the parameter. 

Parametric resonance is possible when one of the 

following conditions for the frequency  (or for 

the period T) of modulation is fulfilled; 

𝜔 =
2𝜔0

𝑛
,     𝑇 =

𝑛𝑇0

2
,    (𝑛 = 1, 2, 3, … )  

In other words, parametric resonance occurs 

when the parameter changes twice during one 

period, once during one period, twice during three 

periods, and so on. However, the maximum 

energy transfer to the vibrating system occurs 

when the parameter is changed twice during one 

period of the natural frequency. In this paper, we 

are interested in the case, in which parametric 

force has the frequency of twice the natural 

frequency of the system. 

Methods of stability analysis of     parametrically 

excited system 

The governing equations for parametrically 

excited systems are second order differential 

equations with periodic coefficients, which have 

no exact solutions. The researchers for a long time 

have been interested to explore different solution 

methods to this class of problem. The two main 

objectives of this class of researchers are to 

establish the existence of peri odic solutions and 

their stability. When the governing equation of 

motion for the system is of Matheiu-Hill type, a 

few well known solution methods those are 

commonly used are, method proposed by Bolotin 

based on Floquet’s theory. 

 perturbation and iteration techniques, the 

Galerkin’s method, the Lyapunov second method 

and the asymptotic technique by Krylov, 

Bogoliubov and Mitroploskii. 

Nomenclature 

ωF     excitation frequency (Hz) 

T       period [s] 

Ω      natural frequencies of boring bar [rad/s] 

MR,MB  Mass of rod and boring bar          

respectively 

KB  boring bar stiffness (N/m) 

KN rubber stiffness (N/m) 

KPE single stiffness element (N/m) 

FC cutting force magnitude (N) 

CB,CR  damping of boring bar and rod 

respectively  

b chip width (m) 

Ks cutting force coefficient (N/m2) 

h instantaneous chip thickness (m) 

h0 normal chip thickness (m) 

M mass matrix 

C  damping matrix 

K  stiffness matrix 

Ps  static load (N) 

Pt         time component of the load (N) 

 

II. DESIGN OF BORING BAR 

CONCEPT 

   Our study is based on a model for the 

suppression of chatter vibrations of boring bar by 

a dynamic absorber with parametric excitation 

formulated in [11]. Consider a two mass system 

consisting of a main mass MB which is subject to 

self-excitation vibration and an absorber mass MR 

which is attached to the main mass by a spring 

element, see Figure 1. The elastic mounting KPE 

of the absorber mass is a combination of a spring 

and a device operating such that the stiffness KPE 

is changed periodically. Damping is represented 

by the linear viscous damper CR. The main mass 

MB is supported by a spring with constant stiffness 

KB; it has a linear viscous damper with damping 

parameter CB. In actual constructions one usually 

has MR < MB. 

 

 

 

Fig. 1. Interaction between Self-excited and 

Parametric Vibrations 

The boring process generated self-excited force is 

acting on the main mass MB. The displacements of 

mass MB and mass MR are denoted by the 

coordinates xB and xR, respectively. The variation 

of the stiffness of the absorber element is 
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supposed to be a harmonic function with small 

amplitude. 

 

Fig. 2. The schematic representation of the two 

mass chain system. 

This system is represented by the following 

nonlinear equations of motion: 

 

𝑀𝑅 𝑥𝑅̈ +  𝐶𝑅 𝑥̇𝑅 +  𝐾𝑅 (𝑡)𝑥𝑅 −  𝐾𝑁(𝑥𝑅 − 𝑥𝐵) = 0    
(1) 

𝑀𝐵 𝑥𝐵̈ +  𝐶𝐵 𝑥̇𝐵 +  𝐾𝐵 𝑥𝐵 +  𝐾𝑁(𝑥𝑅 − 𝑥𝐵) = 𝐹𝑐(t)     

(2) 

         where: 𝐾𝑃𝐸 = 𝐾𝑅(𝑡) 

KPE: Parametric excitation stiffness. 

with: M is the mass, C is the damping, K is the 

stiffness, and the right side of the equation (2) 

represents the cutting force acting on the tip of the 

boring bar. 

𝑀𝑅 𝑥𝑅̈ +  𝐶𝑅 𝑥̇𝑅 +  𝐾𝑅 (1 + 𝜀𝑐𝑜𝑠𝜔𝜏)𝑥𝑅 −  𝐾𝑁(𝑥𝑅 

−𝑥𝐵) = 0                                                           (3) 

 

𝑀𝐵 𝑥𝐵̈ +  𝐶𝐵 𝑥̇𝐵 +  𝐾𝐵 𝑥𝐵 +  𝐾𝑁(𝑥𝑅 − 𝑥𝐵) = 𝐹𝑐(t)    

(4) 

where:      𝐾𝑅(𝑡) = 𝐾𝑅 (1 + 𝜀𝑐𝑜𝑠𝜔𝜏) 

The above equations (3) and (4) can be written in 

matrix form as:  

[
𝑀𝑅 0
0 𝑀𝐵

] {
𝑥̈𝑅

𝑥̈𝐵
} +[

𝐶𝑅 0
0 𝐶𝐵

] {
𝑥̇𝑅

𝑥̇𝐵
}+ 

[
𝐾𝑅 (1 + 𝜀𝑐𝑜𝑠𝜔𝜏) + 𝐾𝑅 −𝐾𝑁

−𝐾𝑁 𝐾𝐵 + 𝐾𝑁
] {

𝑥𝑅

𝑥𝐵
} =

 {
0

𝐹𝑐 (𝑡)
}      

                                                                                   

(5) 

 𝐹𝑐(𝑡) = 𝐾𝑠. 𝑏. ℎ(𝑡)                                            (6) 

 

According to the low of regeneration [8] and [9] 

with the thickness of the chip can be expressed 

by: 

   ℎ(𝑡) = ℎ0 − [𝑥(𝑡) − 𝑥(𝑡 − 𝜏)] 

where  𝜏 the delay time. 

The motion of an n degree-of-freedom system can 

be represented by a system of second-order 

differential equations: 

M𝑥̈(t) + C𝑥̇(t) + Kx (t) = fc (t)                             (7) 

Where 𝑥𝑅 and  𝑥𝐵 are the displacement, fc(t) is the 

excitation force, M (mass matrix), C damping 

matrix) and K (stiffness matrix). 

The boring bar is subjected to a pulsating axial 

force P (t) = Ps + Pt cos ωF t, acting along its 

lateral side. ωF is the excitation frequency of the 

dynamic load component, Ps is the static and Pt is 

the time component of the load. 

 

Fig. 3. Boring bar with boundary conditions 

(fixed-free). 

                                     

 

Fig. 4. Block diagram of the control. 
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Final design 

        To maintain a high level of static stiffness, it 

was chosen to adapt the following solution figure 

3 witch use the excitation of the active part of the 

tool from the back by a rod which receives 

parametric excitation from shaker mounted on the 

tool holder. 

 

 

              Fig. 5.  CAD model of the boring bar. 

 

 

 Fig. 6.   Machining configuration  

III. PERFORMANCE EVALUATION 

Analysis method 

    The evaluation of the novel design compared to 

the conventional tool has been carried out in two 

steps: at first MOVILOG fft2 with DIVA 

software has been employed to produce signals 

and to extract the dynamic characteristics of the 

process machine interaction. The surface 

roughness has been measured after every test with 

a Mitutoyo Surftest 201 and correlated to the 

vibration signals.  

Machining tests 

     The tools have been tested clamped in the 

same tool holder configurations as modal analysis 

with an overhang of 250 mm and a diameter of 32 

mm. Round workpieces made of XC38 with a 

outer diameter of 160 mm, a inner diameter of 

100 mm and a length of 60 mm were machined. 

The machining operations were carried out at 

three different depths of cut ap, 0.5mm, 1mm, 

1.5mm. Keeping constant cutting speed Vc at 120 

m/min and feed f at 0.2 mm/tr. The effect of the 

tool’s damping ratio on the machining process is 

shown in figure 7 and figure 8, where the signals 

produced by machining with conventional and the 

damped tool (under PE and without PE) 

respectively, are compared.  

 

Fig. 7. Signal produced by machining with 

         conventional tool                            

   

Fig. 8. Signal produced by machining with 

                          damped tool 

 

Fig. 9.  Time record of signal produced when 

machining at vc = 120 m/min f= 0.2 mm/rev and 

ap = 1 mm. 
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IV. SURFACE ROUGHNESS 

The surface finish produced by the conventional 

tool is of much lower quality if compared to the 

one produced by the damped tool with parametric 

excitation. Figure 10 shows the surface profile 

taken after machining at 1 mm; the conventional 

tool is not able to perform in stable conditions and 

therefore the surface profile is disturbed by the 

chatter marks. 

 

Fig. 10.  Surface roughness scan. a) Conventional 

tool, b) Damped tool with PE; after machining at 

Vc=120 m/min, f=0.2mm/rev, and ap= 1mm. 

 

 

 

Fig. 11. Photo of surface finish with chatter marks 

produced by conventional tool and high quality 

surface finish with damped tool with PE. 

 

 

 

Fig.12. Average surface roughness. 

 

V. CONCLUSION 

  The stability of the linerized boring bar attached 

element system is investigated by a numerical 

simulations indicate that parametric stiffness 

excitation has a better effect on regenerative 

chatter suppression. The striking advantage of this 

application presented is the fact that parametric 

excitation only needs an open loop control 

system. This might be very advantageous for 

other applications, since it will save the cost, 

weight and energy for sensors and controllers, 

which might be very important in certain 

applications. The results of experiments carried 

out show that this new design of boring bar can be 

a good solution to suppress chatter vibrations. 
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