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Abstract 

A model of the Lyra universe is presented. Using the tunneling effect approach, the Hawking radiation 

temperature near the black hole horizon is calculated. 

Keywords:   Lyra geometry, black holes, Hawking radiation, Tunneling effect. 

 

 

Un modèle  se basant sur l’univers de Lyra est présenté. En utilisant l’approche de l’effet tunnel, la température 

de la radiation Hawking au voisinage de l’horizon du trou noir est calculée. 

Mots clés : géométrie de Lycra, trous noirs, radiation de Hawking, effet tunnel 
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I- INTRODUCTION 

 

Einstein developed [8] the general theory of 

relativity to unify gravity with  other fundamental forces, but 

in this theory, gravitation is described in terms of Riemannian 

geometry, which could not only help to unify gravitation and 

electromagnetism in a single space-time geometry [1]. For 

that reason, Lyra [2] proposed in 1951 a modifications on 

Riemannian  geometry (Lyra’s geometry) by introducing a 

gauge or scale function which removes the non-instability 

condition of a vector under parallel transport. Soon after, Sen 

[3] and Sen with Dun in 1971[5] constructed an analog of the 

Einstein field equation based on Lyra’s geometry as: 

 

𝑅𝑖𝑗 −
1

2
𝑔𝑖𝑗𝑅 +

3

2
𝜙𝑖𝜙𝑗 −

3

2
𝑔𝑖𝑗𝜙𝑘𝜙

𝑘 = 8𝜋𝐺𝑇𝑖𝑗         (1) 

 

𝜙𝑖  is the displacement field vector where: 

 

𝜙𝑖 = (𝛽, 0,0,0)                             (2) 

 

𝛽 is a constant or a time-depending function. Further more, 

Sen and Dunn [3] gave a series type solutions to the static 

vacuum field equations. Retaining only a few terms in their 

solutions, we find that their solutions correspond to black 

holes (Lyra black holes). 

    In this paper, we study the Hawking radiation [4] of Lyra 

black hole. For that we proceed to analyze the Dirac equation 

in Lyra space-time and use the tunneling method because The 

Hawking's effect is a phase phenomenon. Such tunneling 

approach uses the fact that the WKB approximation of the 

tunneling probability for the classical forbidden trajectory 

from inside to outside the horizon is: 

 

Γ ∝ 𝑒−(2/ℏ)𝐼𝑚(𝐼)                            (3) 

 

where 𝐼 is the classical action of the trajectory, to leading 

order in ℏ. 

 

II. LYRA BLACK HOLES 

 

Let us consider a static spherically symmetric metric: 

 

𝑑𝑠2 = 𝑒𝜈𝑑𝑡2 − 𝑒𝜆𝑑𝑡2 − 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2)   (4) 

 

Sen and Dunn [1] are defined 𝑒𝜈 and 𝑒𝜆 to obtain solutions to 

the field equations (04) as: 

 

{
𝑒𝜈 = 𝐷 + 𝐶𝜙(𝑟)

𝑒𝜆 =
𝐴𝑟4(𝜙′)2

𝐷+𝐶𝜙(𝑟)

                       (5) 

where 

𝜙 = ∑ 𝑎𝑛𝑟
−𝑛∞

𝑛=0                           (6) 

 

𝐴, 𝐵, 𝐶 are arbitrary constant. The coefficients 𝑎𝑛are given 

by 𝑎0. 𝑎3 is arbitrary and 𝑎2 = 0; 𝑎𝑛 (𝑛 ≻ 0) are determined 

by: 

 

0 = 𝑎𝑛−1[(𝐷 + 𝐶𝑎0)(𝑛 − 1)(𝑛 − 4)] − 𝐴𝑎1 ∑(𝑘 − 1)(𝑛 −
𝑘 + 1)𝑎𝑘−1𝑎𝑛−𝑘+1 − 𝐴∑[(𝑙 − 1)𝑎𝑙−1] [∑(𝑘 − 1)(𝑛 − 𝑙 −
𝑘 + 3)𝑎𝑘−1𝑎𝑛−𝑙−𝑘+3] − ∑(𝑛 − 1)(2𝑙 − 𝑛 − 1)𝑎𝑛−𝑙𝑎𝑙−1       

(7) 

 

retaining only a few terms, we have: 

 

𝐶2 =
2𝑎3

𝑎1
, 𝐶 + 𝐷𝑎0 = 1, 𝑎1 = ±

1

√𝐴
 ,
𝐶

√𝐴
= 𝑀     (8) 

 

where 𝑀′ = 2𝑀 is mass of black hole. 

Thus one can write 𝑒𝜈 and 𝑒𝜆 as: 

 

{

𝑒𝜈 = 1 −
𝑀

𝑟
+

𝑀√𝐴𝑎3

𝑟3
+

𝑀2√𝐴𝑎3

𝑟4

𝑒𝜆 =
𝜎2

1−
𝑀

𝑟
+
𝑀√𝐴𝑎3
𝑟3

+
𝑀2√𝐴𝑎3

𝑟4

            (9) 

Where 

 

𝜎2 = 1 −
6√𝐴𝑎3

𝑟2
−

8𝑀√𝐴𝑎3

𝑟3
+

9𝐴𝑎3
2

𝑟4
           (10) 

 

If we take the time component in (04), we can easily prove 

that the singularity locates at r=0, and the horizons 

correspond to 𝑒𝜈 = 0; at that moment we get an equation in 

4𝑡ℎ order, 

𝑟4 −𝑀𝑟3 + 𝑝𝑀𝑟 + 𝑝𝑀2 = 0             (11) 

 

with 𝑝 = √𝐴𝑎₃.  This means that we will obtain four roots: 

 

{
  
 

  
 𝑟1 =

1

2
[(𝑎 − 𝑙) + √(𝑎 − 𝑙)2 − 4(𝑏 + 𝑚)]

𝑟2 =
1

2
[(𝑎 − 𝑙) − √(𝑎 − 𝑙)2 − 4(𝑏 + 𝑚)]

𝑟3 =
1

2
[(𝑎 + 𝑙) + √(𝑎 + 𝑙)2 − 4(𝑏 − 𝑚)]

𝑟4 =
1

2
[(𝑎 + 𝑙) − √(𝑎 + 𝑙)2 − 4(𝑏 − 𝑚)]

      (12) 

Where 

 

𝑎 =
𝑀

2
, 𝑙 =

−(𝑏+𝑝)𝑀

2√𝑚
, 𝑚 = 𝑏2 − 𝑝𝑀2, 𝑏 =

𝑆

12
+

5𝑝𝑀2

𝑆
  (13) 

 

with 

𝑆 = [108𝑝𝑀2(𝑝 + 𝑀2) +

12𝑝𝑀√(−1338𝑝𝑀2 + 81(𝑀4 + 𝑝2))]

1
3

                       (14) 

 

𝑏 represents the real solution of the equation 

 

𝑏3 − 5

4
𝑝𝑀2𝑏 − 1

8
(𝑝𝑀2 + 𝑝2𝑀2) = 0             (15) 

 

the two other solutions are given by the expressions 

 

{
𝑏′ = −

𝑆

24
−

5𝑝𝑀2

2𝑆
+ 𝐼√3

4
(𝑆 −

10𝑝𝑀2

𝑆
)

𝑏′′ = −
𝑆

24
−

5𝑝𝑀2

2𝑆
− 𝐼√3

4
(𝑆 −

10𝑝𝑀2

𝑆
)
           (16) 

 

    Only two roots between the solutions (12) are positive; see 

(Figure 1) 
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 Figure 1 : positive roots of eν 

 

they correspond to the black hole's horizons: 

 

{
𝑟+ = 𝑟1 = Θ1 + Θ2

𝑟− = 𝑟2 = Θ1 − Θ2
                        (17) 

 

where 

Θ1 =
𝑀

4
(1 +

𝐵+𝑝

𝐵2−𝑝𝑀2
)                     (18) 

And 

 

Θ2 =
√3

6
√3

4
𝑀2 (

𝐵+𝑝+1

√𝐵2−𝑝𝑀2
)
2

−
60𝑝𝑀2

𝑆
− 9(𝐵2 + 𝑝𝑀2) − 𝑆           

(19)  

where 

   𝐵 =
𝑆

12
+

5𝑝𝑀2

𝑆
                            (20) 

 

Using Maple, 𝑟+ 𝑎𝑛𝑑  𝑟− are shown respectively in 3-

dimensions with (Figure 2-a) and (Figure 2-b): 

 
Figure 2-a : 3D-variation of 𝑟+ 

 

 
Figure 2-b :3D- variation of 𝑟− 

 

We can also show the variation of the horizons 𝑟+  and 𝑟− 

with the curvature parameter of the space-time 𝑝 and the 

mass of black hole 𝑀 in two dimensions by (figures 3 -a, -b, 

-c and -d):  

 

 
Figure 3-a : variation of 𝑟+ with 𝑀 in different values of 𝑝 

 

 
Figure 3-b : variation of 𝑟+ with 𝑝 in different values of 𝑀  

 

 

 
Figure 3-c : variation of 𝑟− with 𝑝 in different values of 𝑀 

 

 

 
Figure 3-c : variation of 𝑟− with 𝑀 in different values of 𝑝 
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III. DIRAC EQUATION 

 

Now we calculate the fermion's Hawking radiation from the 

apparent horizons of Lyra black holes via the tunneling 

formalism. For this we use the massless spinor field 

𝛹(𝑡, 𝑟, 𝜃, 𝜑) obeyed the general covariant Dirac equation: 

 

𝑖𝛾𝜇𝐷𝜇Ψ(𝑡, 𝑟, 𝜃, 𝜙) = 0                      (21) 

 

where 𝐷𝜇 is the spinor covariant derivative is defined by 

 

𝐷𝜇 = 𝜕𝜇 +
𝑖

2
𝜔𝜇
𝑎𝑏Σ𝑎𝑏                        (22) 

 

and 𝜔𝜇 is the spin connection, which can be given in terms of 

the tetrads 𝑒𝜇
𝑎. 

The matrices 𝛾𝜇 = 𝛾𝑎𝑒𝜇
𝑎 satisfy the Clifford algebra, 

 
[𝛾𝑎, 𝛾𝑏]+ = 2𝜂𝑎𝑏Ι4𝑥4                     (23) 

 

and they are selected as 

 

𝛾0 = 𝑖 (
𝐼2𝑥2 0
0 −𝐼2𝑥2

),   𝛾1 = ( 0 𝜎3

𝜎3 0
)        (24) 

 

𝛾2 = ( 0 𝜎1

𝜎1 0
),        𝛾3 = ( 0 𝜎2

𝜎2 0
)          (25) 

With 

 

𝜎1 = (
0 1
1 0

) , 𝜎2 = (
0 −𝑖
𝑖 0

)  , 𝜎3 = (
1 0
0 −1

)     (26) 

 

𝜎𝑖 are the Pauli matrices satisfying the usual relation: 

 

𝜎𝑖𝜎𝑗 = 𝐼2𝑥2𝛿𝑖𝑗 + 𝑖𝜖𝑖𝑗𝑘𝜎𝑘                  (27) 

𝑖, 𝑗, 𝑘 = 1,2,3.  

 

In order to get the Dirac 𝛾𝜇 matrices which are expressed in 

terms of the tetrads, we first define a tetrad of orthogonal 

vector 𝑒𝜇
𝑎 where: 

𝜂𝑎𝑏𝑒𝜇
𝑎𝑒𝜈

𝑏 = 𝑔𝜇𝜈                        (28) 

 

Here (𝑎, 𝑏) ≡ (0,1,2,3) and (𝜇, 𝜈) ≡ (𝑡, 𝑟, 𝜃, 𝜑). The 

simplest choice of tetrads is given in the following matrix 

form: 

 

𝑒𝜇
𝑎 = (

𝑒𝜈/2    0  0         0
0      𝑒𝜈/2  0         0
0            𝑟  0         0
0           0 𝑟𝑠𝑖𝑛𝜃 0

)                    (29) 

 

so 

𝑒𝑎
𝜇
=

(

 

𝑒−𝜈/2    0  0         0
0      𝑒−𝜈/2  0         0
0            1

𝑟
    0         0

0           0 1
𝑟𝑠𝑖𝑛𝜃

      0 )

                  (30) 

 

with theses tetrads, it turns out that : 

 

{
 
 

 
 
𝛾𝑡 = 𝑒−𝜈/2𝛾0

𝛾𝑟 = 𝑒−𝜆/2𝛾1

𝛾𝜃 =
1

𝑟
𝛾2

𝛾𝜙 =
1

𝑟𝑠𝑖𝑛𝜃
𝛾3

                              (31) 

 

we can also write the matrix 𝛾⁵ in this way: 

 

𝛾5 ≝ 𝑖𝛾𝑡𝛾𝑟𝛾𝜃𝛾𝜙 =
𝑖𝑒−(𝜈+𝜆)/2

𝑟3𝑠𝑖𝑛𝜃
𝛾0𝛾1𝛾2𝛾3          (32) 

 

III.A. HAWKING TEMPERATURE 

To calculate the Hawking temperature, let us employ the 

following ansatz for the spin-up Dirac field: 

 

Ψ↑(𝑡, 𝑟, 𝜃, 𝜙) = (

Γ(𝑡, 𝑟, 𝜃, 𝜙)
0

Ω(𝑡, 𝑟, 𝜃, 𝜙)
0

) 𝑒
𝑖
ℏ𝐼↑

(𝑡,𝑟,𝜃,𝜙)        (33) 

 

It should be noted that the spin-down case is just analogous. 

In order to apply the WKB approximation, we can plug the 

ansatz (33) into the general covariant Dirac equation (21) [4], 

it turns out that the term in square brackets is of order 𝑂(ℏ). 
Thus we do not need to work out its pricise form, since in the 

ℏ → 0 limit it vanishes. So the equation (21) becomes: 

 

ℏðΨ↑(𝑡, 𝑟, 𝜃, 𝜙) + 𝜊(ℏ) = 0                (34) 

 

one can arrive at the expression 

 

𝑒−𝜈/2(

Γ𝜕𝑡𝐼↑
0

−Ω𝜕𝑡𝐼↑
0

) + 𝑒−𝜆/2(

𝑖Ω𝜕𝑟𝐼↑
0

iΓ𝜕𝑟𝐼↑
0

) +
1

𝑟
(

0
𝑖Ω𝜕𝜃𝐼↑
0

iΓ𝜕𝜃𝐼↑

)+

1

𝑟𝑠𝑖𝑛𝜃
(

0
−Ω𝜕𝜙𝐼↑

0
−Γ𝜕𝜙𝐼↑

)𝑒
𝑖
ℏ𝐼↑ = 0                (35) 

 

Hence we get the following equations system: 

 

{
 
 

 
 
𝑡:−𝑒−𝜈/2Γ𝜕𝑡𝐼↑ + 𝑖𝑒

−𝜆/2Ω𝜕𝑟𝐼↑ = 0

𝑟:
Ω

𝑟
(𝑖𝜕𝜃𝐼↑ −

1

𝑠𝑖𝑛𝜃
𝜕𝜙𝐼↑) = 0

𝜃:−𝑒−𝜈/2Γ𝜕𝑡𝐼↑ + 𝑖𝑒
−𝜆/2Ω𝜕𝑟𝐼↑ = 0

𝜙:
Γ

𝑟
(𝑖𝜕𝜃𝐼↑ −

1

𝑠𝑖𝑛𝜃
𝜕𝜙𝐼↑) = 0

           (36) 

 

Here Killing vector is time like 𝜒 = 𝜕𝑡 is enough for this 

static black holes, it plays the role of Kodama vector for 

dynamical case. 

To solve the above system, we use an other ansatz for the 

action 𝐼↑ : 
𝐼↑ = ∫𝐸𝑑𝑡 + 𝑅(𝑟) + 𝐽(𝜃, 𝜙) + 𝐶             (37) 

 

 C is a constant. 

This choice of 𝐼↑ leads to the following system of equations: 
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{
 
 

 
 
𝑡:−𝑒−𝜈/2Γ𝐸 + 𝑖𝑒−𝜆/2Ω𝑅′(𝑟) = 0

𝑟:
Ω

𝑟
(𝑖𝐽𝜃

′ (𝜃, 𝜙) −
1

𝑠𝑖𝑛𝜃
𝐽𝜙
′ (𝜃, 𝜙)) = 0

𝜃: 𝑒−𝜈/2Ω𝐸 + 𝑖𝑒−𝜆/2Γ𝑅′(𝑟) = 0

𝜙:
Γ

𝑟
(𝑖𝐽𝜃

′ (𝜃, 𝜙) −
1

𝑠𝑖𝑛𝜃
𝐽𝜙
′ (𝜃, 𝜙)) = 0

        (38) 

Where 

 

{
 
 

 
 𝑅′(𝑟) =

𝜕𝑅(𝑟)

𝜕𝑟

𝐽𝜃
′ (𝜃, 𝜙) =

𝜕𝐽(𝜃,𝜙)

𝜕𝜃

𝐽𝜙
′ (𝜃, 𝜙) =

𝜕𝐽(𝜃,𝜙)

𝜕𝜙

                       (39) 

 

    For the second and the fourth equations in the system (38), 

we obtain the same results in the spin-down case [7],  they 

imply that 𝐽(𝜃, 𝜑) is complex function. However, as regards 

the first and third equations in (38), we can discuss  two cases: 

 

1. If Γ = ±iΩ, then we have: 

(∓𝑒−𝜈/2𝐸 + 𝑒−𝜆/2𝑅′(𝑟))Ω = 0                (40) 

 

which implies that: 

 

𝑅′(𝑟) = ±
𝑒−𝜈/2

𝑒−𝜆/2
𝐸                           (41) 

 

2. If Γ=±Ω, then: 

𝑅′(𝑟) = 0                                (41) 

 

The case (41) corresponds to incoming particle absorbed in 

the classical limit with probability 𝒫𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 1  [4-5], when 

the first case describes the emission process with the 

probability: 

Γ ∝ 𝑒−
2
ℏ𝐼𝑚𝑅

(𝑟)                            (42) 

 

For that we need the imaginary part of the function 𝑅(𝑟), thus 

we have: 

 

𝐼𝑚𝑅(𝑟) = ±𝐸𝐼𝑚 ∫
𝑒𝜆/2

𝑒𝜈/2
𝑑𝑟 = ±𝐸𝐼𝑚 ∫

𝜎(𝑟)

𝑒𝜈
𝑑𝑟     (43) 

 

if we replace 𝑒𝜈 by its expression, we can write: 

 

𝐼𝑚𝑅(𝑟) = ±𝐸𝐼𝑚 ∫
𝑟4𝜎(𝑟)

(𝑟−𝑟+)(𝑟−𝑟−)𝐻(𝑟)
𝑑𝑟           (44) 

 

where 

𝐻(𝑟) = 𝑟2 + (𝑟++𝑟− −𝑀)𝑟 +
𝑝𝑀2

𝑟+𝑟−
𝑟 + 𝑝𝑀2      (45) 

 

Using Residus theorem, we get : 

 

𝑅(𝑟) = 2𝑖𝜋[𝑅𝑒𝑠(𝑅(𝑟), 𝑟+) + 𝑅𝑒𝑠(𝑅(𝑟), 𝑟−)]      (46) 

 

one can easily find 𝐼𝑚𝑅(𝑟) where we have two poles located 

at the horizons 𝑟₊ and 𝑟₋ : 
 

𝐼𝑚𝑅(𝑟) = ±
2𝜋𝐸

𝑟+−𝑟−
[
𝑟+
4𝜎(𝑟+)

𝐻(𝑟+)
−

𝑟−
4𝜎(𝑟−)

𝐻(𝑟−)
]            (47) 

where 

 

{
 

 𝜎(𝑟+) = √1 − 6
𝑝

𝑟+
2 − 8

𝑝𝑀

𝑟+
3 + 9

𝑝2

𝑟+
4

𝜎(𝑟−) = √1 − 6
𝑝

𝑟−
2 − 8

𝑝𝑀

𝑟−
3 + 9

𝑝2

𝑟−
4

              (48) 

 

Finally, taking the definition (42), we write: 

 
𝐸

𝑇𝐻
= ±2

ℏ
𝐼𝑚𝑅(𝑟)                            (49) 

 

Here we can Distinguish two cases of the Hawking 

temperature: 𝑇𝐻𝑖𝑛𝑛𝑒𝑟   caused only by 𝑟₋ and 𝑇𝐻𝑜𝑢𝑡𝑒𝑟  caused 

by both of the horizons 𝑟₊ and 𝑟₋: 
 

𝑇𝐻𝑖𝑛𝑛𝑒𝑟 =
ℏ

4𝜋
[
𝑟−
2−𝑀2

𝑟−
3𝜎(𝑟−)

]                       (50) 

 

or: 

 

𝑇𝐻𝑖𝑛𝑛𝑒𝑟 =
ℏ

4𝜋𝜎(𝑟−)
[
1

𝑟−
−

𝑀

𝑟−
3]                   (51) 

and 

 

𝑇𝐻𝑜𝑢𝑡𝑒𝑟 = ∓
ℏ

4𝜋
[

(𝑟+−𝑟−)(𝑟+
2−

𝑀
2 )(𝑟−

2−
𝑀
2 )

𝑟+
4𝜎(𝑟+)(𝑟−

2−𝑀2 )−𝑟−
4𝜎(𝑟−)(𝑟+

2−𝑀2 )
]      (52) 

 

Using always the maple, we draw the variation of the 

Hawking temperature with the parameter of  Lyra geometry 

and with the mass of the  corresponding black hole 

presented in  (Figure 4). 

 

 
Figure 4 : Hawking radiation near Lyra black hole 

 

 

III.B. PARTICULAR CASE 

    In this case, we consider one horizon for the Lyra black 

hole [1], i.e: the equation (11) has only one double positive 

root located at: 

 

𝑟0 =
12+√𝑝2+204𝑝𝑀2

6𝑀
                       (53) 

 

for 

 

72𝑝3 + 63𝑝2𝑀 +√144𝑝2 + 204𝑝𝑀2(6𝑝2 + 𝑝𝑀2) =
9𝑝𝑀                                                                                (54) 
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in this case, the singularity is still at 𝑟 = 0. 

To calculate the Hawking temperature for the Lyra black 

holes with only one double positive horizon, the equation (43) 

becomes: 

 

    𝐼𝑚𝑅(𝑟) = ±𝐸𝐼𝑚 ∫
𝑟4𝜎(𝑟)

(𝑟−𝑟0)𝐹(𝑟)
𝑑𝑟            (55) 

 

where 

𝐹(𝑟) = 𝑟2 + (2𝑟0 −𝑀)𝑟 +
𝑝𝑀2

𝑟0
2              (56) 

 

after integrating (55), we get: 

 

𝑅(𝑟) = ±2𝜋𝐸
𝑑

𝑑𝑟
(
𝑟4𝜎(𝑟)

𝐹(𝑟)
)|
𝑟=𝑟0

           (57) 

this implies: 

 

𝑇𝐻 = ∓2𝜋
𝑟0
3𝜎2(𝑟0)[4+𝑟0(4𝑟0)−𝑀]+2𝑟0(3𝑝−

6𝑝𝑀
𝑟0

−9𝑝𝑀
𝑟0
2 )

𝜎(𝑟0)𝐹
2(𝑟0)

   (58) 

 

 

CONCLUSION 
 

 

We conclude that the Hawking radiation near the black hole's 

apparent horizons depends of the space-time geometry (Lyra 

geometry) and the black hole’s properties (mass). 

With the Lyra geometry, we find the same results as the 

riemannien geometry ; the Hawking temperature increases by 

the increase of  the mass of the black hole.    

 

ACKNOWLEDGMENT 

 

We are very grateful to the Algerian Ministry of education 

and research as well as the DGRSDT for the financial 

support. 

REFERENCES 

 
[1]. F. Rahaman, A. Ghosh and M. Kalam, "Lyra black 

holes", arXiv:0803.0435 [hep-th]. 

[2]. G. Lyra, Math Z 54, 52 (1951). 

[3]. D.K. Sen and K.A. Dunn, J. Math. Physi 12, 578 

(1971). 

[4]. R. Di Criscienzo, L. Vanzo, "Fermion Tunneling 

from Dynamical Horizons", arXiv:0803.0435 [hep-

th]. 

[5]. R. Di Criscienzo, S. A. Hayward, M. Nadalini, L. 

Vanzo and S. Zerbini, Class. Quant. Grav, 27, 

015006 (2010). 

[6]. R. Li, J.R. Ren, D.F. S, "Fermion Tunneling from 

Apparent Horizon of FRW Universe", 

arXiv:0812.4217 [gr-qc]. 

[7]. S. A. Hayward, Class. Quant. Grav, 15, p 3147 

(1998). 

[8]. H. Bouhalouf, N. Mebarki, H. Aissaoui, "Fermionic 

Tunneling Effect and Hawking radiation in a Non 

Commutative FRW Universe", The Third Algerian 

Workshop on Astronomy and Astrophysics, AIP 

Conference Proceedings 1295, American Institute of 

Physics, pp 201-209 (2010). 

[9]. R.M. Wald, "General Relativity", Univ. of Chicago 

Press (1992). 

[10].  H. Bouhalouf, N. Mebarki, "Induced Gravity from 

Noncommutative Chiral Gauge Anomalies in the Star 

Product Ordering Approach", The Auresian 

Workshop on Astronomy and Astrophysics, African 

Skies/Cieux Africain Issue, p 61 (2010). 


