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HAWKING TEMPERATURE NEAR LYRA BLACK HOLE’S HORIZONS
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Abstract

A model of the Lyra universe is presented. Using the tunneling effect approach, the Hawking radiation
temperature near the black hole horizon is calculated.
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Résumé

Un modele se basant sur I’univers de Lyra est présenté. En utilisant I’approche de I’effet tunnel, la température
de la radiation Hawking au voisinage de 1’horizon du trou noir est calculée.
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I- INTRODUCTION

Einstein developed [8] the general theory of
relativity to unify gravity with other fundamental forces, but
in this theory, gravitation is described in terms of Riemannian
geometry, which could not only help to unify gravitation and
electromagnetism in a single space-time geometry [1]. For
that reason, Lyra [2] proposed in 1951 a modifications on
Riemannian geometry (Lyra’s geometry) by introducing a
gauge or scale function which removes the non-instability
condition of a vector under parallel transport. Soon after, Sen
[3] and Sen with Dun in 1971[5] constructed an analog of the
Einstein field equation based on Lyra’s geometry as:

Rij —2gyR +3¢¢; — 3gibr " = 8nGT; (1)
¢; is the displacement field vector where:
¢i = (ﬁ' 0!0'0) (2)

[ is a constant or a time-depending function. Further more,
Sen and Dunn [3] gave a series type solutions to the static
vacuum field equations. Retaining only a few terms in their
solutions, we find that their solutions correspond to black
holes (Lyra black holes).

In this paper, we study the Hawking radiation [4] of Lyra
black hole. For that we proceed to analyze the Dirac equation
in Lyra space-time and use the tunneling method because The
Hawking's effect is a phase phenomenon. Such tunneling
approach uses the fact that the WKB approximation of the
tunneling probability for the classical forbidden trajectory
from inside to outside the horizon is:

I o e=@/WIm) 3)
where I is the classical action of the trajectory, to leading
order in A.

IIl. LYRABLACKHOLES

Let us consider a static spherically symmetric metric:
ds? = eVdt? — e*dt? — r?(df? + sin*6d¢p?) (4)

Sen and Dunn [1] are defined e” and e? to obtain solutions to
the field equations (04) as:

eV =D+ Cop(r)
A _ ATt@)? )
D+Co(r)
where
¢ = Z?:O anr_n (6)

A, B, C are arbitrary constant. The coefficients a,are given
by ay. a; is arbitrary and a, = 0; a,, (n > 0) are determined
by:

0=a,4[(D+Cap))(n—1(n—-4)] —Aa, X(k—1)(n -
k+Dag_qan_+1 —AX[I—Da4] [Ek-Dn—-1-
k+3)ax_1an_—g+3] =2 - DQRL—n—Da,_,a;4
7
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retaining only a few terms, we have:

2 _ 243 — — 41 € _
Cc* = al,C+Da0—1,a1—iﬁ,ﬁ—M ®)
where M' = 2M is mass of black hole.
Thus one can write e” and e? as:
2
oV = 1_M+M\/Z;a3 M \/;Za3
T r r
oh = o2 )
N 1_g+@+%
Where
2 6VAaz; 8M+vAaz |, 9Ad}
o _1_7_7‘—34_73 (10)

If we take the time component in (04), we can easily prove
that the singularity locates at r=0, and the horizons
correspond to e¥ = 0; at that moment we get an equation in
4™ order,

r* — Mr3 + pMr + pM? = 0 (11)

with p = vAas. This means that we will obtain four roots:

(7

t@-D+ @Dz 40 +m)

r=t@-0-J@=-D7=40b+m)| "
E =@+ D+ @+ DZ= 40 - m)|
o =2[@+D-J@+DZ=4B-m)|
Where
_M,_ -tp)M _ 2 2 g, _ S 5pM?
a=-,l= N =b pM,b—12+—S (13)
with
S = [108pM2(p + M?) +
3
12pM\/(—1338pM2 +81(M* + p?)) (14)
b represents the real solution of the equation
b® —2pM?*b — 2(pM* + p*M?) = 0 (15)
the two other solutions are given by the expressions
2 2
b _i_ﬂ+1£(g_%)
24 28 4 N (16)
2
b = _i_SI’_M_]£<S_M)
24 28 N

Only two roots between the solutions (12) are positive; see
(Figure 1)
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mass of black hole M in two dimensions by (figures 3 -a, -b,

Hotizons Fos (p=5) and (M=50) .
i -'I -c and -d):
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Figure 1 : positive roots of e AN PR it
Figure 3-a : variation of ;. with M in different values of p
they correspond to the black hole's horizons:
rn=r=0,+0 ]
{ y=Nn 1 2 17) ]
=7 = @1 - @2
where S
—M Bi korzonl M A-._ \\\“-—\_\l‘
®1 - 4 (1 + BZ_pMZ) (18) ol '7*7"'k—‘.ﬁ,‘77‘R7ﬁ
And T
o,d;k;,doji:doziﬁos_¥ofdlo
V3 2 2 e e
3 |3 B+p+1 60pM = mem— me
®=——2( )— —9(B? +pM?%) -5 . . . .
27 6 |4 VB2-pM? S ( pM?) Figure 3-b : variation of r, with p in different values of M
19)
where
5 2
p==42 (20)
12 s
404
Using Maple, 1, and r_are shown respectively in 3-
dimensions with (Figure 2-a) and (Figure 2-b): 304
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Figure 3-c : variation of r_ with M in different values of p

Figure 2-b :3D- variation of r_

We can also show the variation of the horizons r, and r_
with the curvature parameter of the space-time p and the
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lll. DIRAC EQUATION

Now we calculate the fermion's Hawking radiation from the
apparent horizons of Lyra black holes via the tunneling
formalism. For this we use the massless spinor field
Y(t, 1,6, ¢@) obeyed the general covariant Dirac equation:

iy*D,¥(t,7,6,¢) =0 (21)

where Dy, is the spinor covariant derivative is defined by
D, =0, + s
= Ou Ty W Zap

(22)

and w, is the spin connection, which can be given in terms of
the tetrads e.
The matrices y* = y%e satisfy the Clifford algebra,

Var Vbls = 2Naplaxa (23)
and they are selected as
et 0 0 3
0 — 2x2 1 _ o
y —l( . —szz)' y —(03 ) e
y? = ( 0 01) V3= ( 0 02) (25)
ot 0/ g2 0
With
1_(0 1 ,_ (0 —i 3_(1 0
o= (1 0)"7 = (i o) 7= (o —1) (26)
o; are the Pauli matrices satisfying the usual relation:
010j = Ipx28;j + i€j3.0% (27)

ij,k=123.

In order to get the Dirac y* matrices which are expressed in
terms of the tetrads, we first define a tetrad of orthogonal
vector e;f where:

nabe;Lle1I/7 = 9uv (28)
Here (a,b)=(0,1,23) and (uv)=(t71,0,¢). The
simplest choice of tetrads is given in the following matrix
form:

ev2 0 0 0

a_[0 €2 o0 0

% =\o r 0 0 (29)
0 0 7rsin6 0

SO

eV2 0 0 0
0 ev2 o 0

eq = 0 1 0 0 (30)
0 0 rsi1n9 0

with theses tetrads, it turns out that :

(vt =e"/?y°
]/T — e—l/zyl
1
| yo = ;yz (€28
¢ =_1 3
b/ rsing 14
we can also write the matrix y° in this way:
io—(V+2)/2
5 def ;o t.,7..60.,¢ _ € 0,,1,,2.,3
Yy EYYYY =g Y VYV (32)

lll.A. HAWKING TEMPERATURE

To calculate the Hawking temperature, let us employ the
following ansatz for the spin-up Dirac field:

I, r0,¢)

0 i er
Y, (t,7,0,9) = at.r.0,6) e H(ET.0.)

0

(33)

It should be noted that the spin-down case is just analogous.
In order to apply the WKB approximation, we can plug the
ansatz (33) into the general covariant Dirac equation (21) [4],
it turns out that the term in square brackets is of order O (h).
Thus we do not need to work out its pricise form, since in the
h — 0 limit it vanishes. So the equation (21) becomes:

hOW,(t,7,6,¢) + o(h) =0 (34)

one can arrive at the expression
ro.I iQ0, I 0

—v)2 0 0 iQdgl;

—Q0. 1 iro. I,

0 0
0

1 (TR0l 4

rsin 0 ert =0

—Tdyl;

+e /2

S e

e
iCag I

(35)

Hence we get the following equations system:

t:—e V2T 01 + ie™M%Qa,. I, = 0
T:g(iang —La I ) = 0
r sin@ o
I 0:—eV/?I'0,1, +ie *?2Qad.I; = 0
k (i)g(lang - $6¢IT) = 0

(36)

Here Killing vector is time like y = d, is enough for this
static black holes, it plays the role of Kodama vector for
dynamical case.
To solve the above system, we use an other ansatz for the
action I; :

I =[Edt+R(r)+](0,¢)+C 37
C is a constant.
This choice of I; leads to the following system of equations:
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(t:—e V/’TE +ie™"?QR'(r) = 0 (6(r.) = \/1 _ 6__ 8_+ o2
of.. *
l r: :(l]g 6,¢) - Sm9]¢( ¢)) =0 { i i (48)
38 P pM p
0:e V/2QF + Le"l/ZFR =0 (38) k \/ —65z 8 + =
r .
= iJ,(0, o, > =0 . . .. .
k(p T (lje( 2 sin@ ]¢( ¢) Finally, taking the definition (42), we write:
Where
E
— = +2ImR(r 49
R -2 = HmR(r) (49)
0, 9J (9 $) Here we can Distinguish two cases of the Hawking
Jo(6,9) = (39)
a](e " temperature: TH;pp.r caused only by r_ and TH ;. caused
U¢ @6,9) = 2% by both of the horizons r, and r_:
For the second and the fourth equations in the system (38), THipner = [ oy (50)
we obtain the same results in the spin-down case [7], they am [r= "(T )
imply that J (8, ¢) is complex function. However, as regards .
the first and third equations in (38), we can discuss two cases:
. M
1. IfT = 1iQ, then we have: THinper = m T3 (51)
and
(FeE + e ?R(1)) Q=0 (40)
TH — $ h (T+ T_)(r_%—%)(rz—ﬂzd) (52)
which implies that: outer ™ T am | rto(ry)(r2-M)-rto(r)(r2- )
R(r) = e™v/2 E (41) Using always the maple, we draw the variation of the
T e M2 Hawking temperature with the parameter of Lyra geometry

and with the mass of the corresponding black hole

2. If=Q, then: presented in (Figure 4).

R(r)=0 (41) 1100+
The case (41) corresponds to incoming particle absorbed in 00
the classical limit with probability P;,,cigens = 1 [4-5], when 500
the first case describes the emission process with the —_
probability: ]
2 7001
T « e_EImR(T) (42) THoufer j
600
For that we need the imaginary part of the function R(r), thus 0]
we have: 1
400
o(r) 004
ImR(r) = +E1mf =7 " dr = +EIm [—=dr  (43) I
a0
if we replace e” by its expression, we can write: —YT _p:D_DmT_ng_mﬁ
——p=0.0103
4
ImR(r) = +EIm [ r o dr (44) Figure 4 : Hawking radiation near Lyra black hole

(r-r) =T )H ()

where
111.B. PARTICULAR CASE

2
Hr) =72+ (o4 — Mr + 250 + pM2 (45) . , .
T+7- In this case, we consider one horizon for the Lyra black
hole [1], i.e: the equation (11) has only one double positive

Using Residus theorem, we get : root located at:

R(T) = 2i7T[R€S(R(T),T+) + ReS(R(T),T_)] (46) 12+\/W (53)
=T
one can easily find ImR (r) where we have two poles located
at the horizons r, and r_ : for
ImR(r) = + 2nE [Tffff(n) _ ri‘a(r—)] (47) 72p3 + 63p*M + \/144p2 + 204pMZ2(6p? + pM?) =
ry—r— L H(ry) H(r2)
where oM (54)
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in this case, the singularity is still at r = 0.

To calculate the Hawking temperature for the Lyra black
holes with only one double positive horizon, the equation (43)
becomes:

_ rta(r)
ImR(r) = iEImf—(T_TO)F(T) (55)
where
2 pm?
F(r)=r +(21’0—M)r+r—2 (56)
0
after integrating (55), we get:
_ d rto(r)
R(r) = +2nE £ (-2 - ) . (57)
this implies:
r0302(ro)[4+r0(4r0)—M]+2r0<3p—%—gf—M)
TH = F2m 92 (58)

a(ro)F2(rp)

CONCLUSION

We conclude that the Hawking radiation near the black hole's
apparent horizons depends of the space-time geometry (Lyra
geometry) and the black hole’s properties (mass).

With the Lyra geometry, we find the same results as the
riemannien geometry ; the Hawking temperature increases by
the increase of the mass of the black hole.
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