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Abstract— Development of databases software 

systems would be provided with a high-level 

specification, suitable for formal reasoning about 

application-level security and correctness properties. 

Formal specification is a key element of formal 

methods. It can greatly increase comprehension of a 

system by revealing inconsistencies, ambiguities, and 

incompleteness that might occur. Thus, 

implementation would be proven correct with respect 

to this specification to ensure that a bug cannot lead to 

non-conformance of properties or accidental 

corruption. It is for these reasons that we see verified 

DBMSs as a compelling challenge to the development 

of software. As a step toward this goal, we establish in 

this paper formalization through a formal specification 

of some basis concepts in object/relational model 

proposed by Date and Darwen, using the Coq proof 

assistant system. We give the challenges acquired from 

our experience using that proof tool. Our work is a 

preamble step toward a fully-verified object/relational 

DBMS. 

 

Index Terms—Formal specification, proof assistant 

system, Coq, verification, object/relational model. 

introduction  

Software databases systems inevitably grow in 

scale and functionality. Because of this increase in 

complexity, the likelihood of subtle errors is much 

greater [1].  A major goal of software engineering is 

to enable developers to construct systems that 

operate reliably despite this complexity. One way of 

achieving this goal is by modeling them in a formal 

way [2, 3]. Formal modeling plays a key role in 

building of high assurance and trusted software 

databases systems. This modeling enables formal 

reasoning about the system design that can be used 

to prove that the system has certain properties [4, 5].  

A distinguishing feature of high assurance systems is 

that they are modeled mathematically using formal 

methods [6, 7].  

Formal methods consist of a set of techniques 

and tools based on mathematical modeling and 

formal logic that are used for specification, 

development, proof and verification requirements 

and designs in software systems, such as in 

databases management systems (DBMSs).  

Particularly, they provide a mathematical framework 

in which it is possible to ensure the correctness of 

development and assurance in the validity of the  

 

 

 

 

 

 

 

 

 

 

 

 

results [8]. By defining languages with a clear 

semantics, and making explicit how to reason on 

these later. 

Specification is a key element of deductive 

formal methods; it’s the process of describing a 

system and its desired properties [9]. Formal 

specification uses a language with mathematically 

defined syntax and semantics.  

One current trend is to integrate different 

specification languages, each able to handle a 

different aspect of a system. Another is to handle 

non-behavioral aspects of a system such as its 

performance, security policies, architectural design, 

and theoretical concepts, integrity constraints, 

functional dependencies in Databases [10, 11, 12]. 

Formal specification can greatly increase our 

understanding of a system by revealing 

inconsistencies, ambiguities, and incompleteness 

that might otherwise go undetected.  Therefore, it 

seems very interesting to use specialized software to 

assist in the specification by means of Proof 

Assistant system [13, 14, 15] 

The goal of this paper is to give a formalization 

of some key concepts of the orthogonal 

object/relational model of Date and Darwen 

proposed in [16], the different concepts are 

expressed in terms of the type system which we have 

presented in [17].  This type system has a pseudo-

algorithmic and grammatical description of all types 

in such model, namely: scalar, tuple, and relation 

types. Our algebraic grammar describes in detail the 

complete specification of an inheritance model: 

simple and multiple. An extension of this type 

system is performed by a special type representing 

null values [18]. Such an extension is prompted by a 

position that favors the existence of null values in 

object / relational model and proposes a semantic 

expression. We describe, specially, a formal 

specification for these concepts using Coq Proof 

Assistant [19]. 

Coq Proof Assistant is designed to develop 

mathematical proofs, and especially to write formal 

specifications, implementations and to verify using 

type-checking algorithm that the later are correct 

with respect to their specification. Thus, it allows 

interactively constructing formal proofs and supports 

specification of static data, functions and definitions 

which can be developed using the basic specification 
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language Gallina in Coq. Using Curry-Howard 

isomorphism [20, 21], programs, properties and 

proofs are formalized in the same language called 

Calculus of Inductive Constructions [22], that is a λ -

calculus with a rich type system [23, 24].  

Conveniently, the reasoning is at the same platform 

with the specification. All above strong points of 

Coq make us to use it to finish our specification 

work. 

This article is organized as follows. Section 2 is a 

definition of theoretical concepts of Date and 

Darwen’s data model. In section 3 we present our 

formal specification for most important relational 

concepts in that model using the proof system Coq. 

In section 4 we discuss the challenges we faced 

using that proof environment of development in 

building such specification. Finally, a conclusion 

closes the paper. 

 Definition of basic concepts in date and 

darwen’s data model 
Date and Darwen have proposed a theoretical 

basis for integration of a few object concepts in the 

relational context [16]. In that model, it’s not 

necessary to restructure  the model to achieve the 

object concepts. It is enough to expand domains to 

new abstract data types, and allow inheritance and 

sub-typing in order to take advantage of the object-

orientation features. 

       Date and Darwen have also proposed a query 

language Tutorial D and relational algebra A. The 

semantic links between these entities are modeled 

through the concept of relation variables (relvar). 

The DBMS Rel implements a significant portion of 

Date and Darwen's Tutorial D query language. 

Thus, Date and Darwen have given formal 

definitions adapted to their vision of future 

databases. We present such definitions as follows: 

 

Definition 1 (Heading). A Heading {H} is a set of 

ordered pairs <A, T> such as:  

a. A is the name of attribute in {H}. 

b. T is the declared type of the attribute A.  

c. Two pairs <A1, T1> and <A2, T2> are 

considered if A1 ≠ A2  

Definition 2 (Tuple).  Given a collection of types Ti 

(i = 1, 2, ..., n, where n 0), not necessarily all 

distinct, a tuple t -over those types- is a set of n 

ordered triplets of the form <Ai,Ti,vi>, such as vi is 

the value of the attribute Ai of type Ti.  

 

Definition 3 (Body of relation). A body Br of a 

relation r is a set of tuple ti. However, there may be 

exist tuples tj that conform to the heading {H} 

without that tj B.  

 

Definition 4 (Relation). A relation r is defined by 

its heading {Hr} and its body Br. The Heading {H} 

represents the schema of the relation r.  

Given a heading {H}, a relation variable relvar 

must be of type RELATION {H} [16]. The 

instantiation of a relation variable relvar is done 

explicitly during the operation of defining relvar, or 

an empty relation if no explicit value is specified. 

Formal specification of basic concepts by Coq 

assistant proof 

In this section, we describe a formal specification 

by choosing an appropriate encoding of the 

object/relational model and using an adequate 

efficient environment for formal reasoning and 

specification, namely Coq assistant proof system. 

Formalization of basic concepts is given for 

many reasons: 

 

 Basic concepts and algebra make 

foundation constructs of the model, 

indeed; their specification establishes 

formal semantics that conspire to take a 

formal and rigorous comprehension of 

these concepts. 

 Specification of a concept is strongly linked 

to another concept such as with relation 

and tuple. 

 Specification of queries is based on the 

specification of the basic concepts (a 

query concerns necessarily a relation). 

 Passing to verification tasks is necessarily 

preceded by a detailed specification of 

every concept. 

Relational algebra has a standard definition in 

terms of set theory [25]; therefore, we consider that 

our work of specification deals with realizing both 

sets and relational algebra (see section D) in coq. 

We describe briefly in an informal way the key 

relational concepts in that model and how specifying 

them within Coq. 

Object/relational model of Date and Darwen is 

modeled using relations. In such model, a relation is 

represented by some heading and a body which is 

simply a finite set of tuples over a set of couples 

(attribute, type). To simplify our work and 

accordance the typing environment of Coq, we 

consider that an attribute in a heading is represented 

by its type. So, the heading is described as a list of 

types. The list of types that describes the attribute is 

then known as the schema for the relation. Tuples in 

a relation are indexed by a set of attribute names. 

Again, for reason of simplification, we use the 

position of an element as the attribute name.  

There are many ways to represent relations in 

Coq [19].  For example, in [26] it is suggested that 

schemas should be represented as functions from a 

finite set of attribute names to type names, but in 

practice, we found that a concrete encoding using a 

list of type names yields a more workable 

representation. Another choice was how to represent 

relations as finite sets. Finite sets are a common 

http://en.wikipedia.org/wiki/Christopher_J._Date
http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/D_%28data_language_specification%29
http://en.wikipedia.org/wiki/Query_language
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abstraction and Coq conveniently provides them as a 

standard library.  

 We provide now formal specifications of these 

concepts using Coq assistant proof system: 

A. Schema of relation (the heading) 

 We define the schema for a relation as a list of 

type names which denoted tnameHeading. Each type 

in the heading are is generated recursively from a 

type system defined in [17] and we might define 

tnameHeading as the inductive definition: 

 

 

 

 

 

 

 

 

 

 

 

 

We must indicate here that “Set” refers to Coq’s 

predefined sort or type universe [19], not sets in the 

sense of relations (in Gallina language, the term 

tnameHeading is called specification). Type TUPLE 

and RELATION will be given in next sections. 

Option constructor is used to denote a particular type 

that contains no values (null values ” ”) which we 

have presented in [17] and treated within the type 

system given in [18] through our in-depth study of 

Date and Darwen’s object/ relational model [16]. 

Type names can be mapped to Coq types by a 

denotation function tnameDenote. The definition for 

type names below and the denotation function are 

parameters to the system so that users can easily add 

new constructors to the set of schema types. We 

define this denotation function as: 

 

 

 

 

 

 

 

 

 

 

The function tnameDenote is defined as 

recursive (via Fixpoint coq’s key world). In this 

definition, tnameDenote take t as argument of type 

tnameHeading on which recursion is organized, and 

return some type represented as universe “Set” since 

tnameDenote a general function for defining types. 

defined tnameDenote recursive functions contain a 

filter (with coq’s match key word) on the argument 

t, so that it is led to give in fist the value of the 

function when the argument is nat, boolean, and so 

on, then the value of the function when the argument 

is of the form "option t’ " with the possibility of 

using the value of the same function in t '. 

In Coq, generally, option types are used instead 

of not.found exceptions. Our idea of choosing use of 

option types is due to try extending the 

tnameHeading of the partial function Option t: 

tnameHeading → tnameHeading, by the special 

value such that Option t’ : tnameHeading → 

tnameHeading ∪ { } is a total function. Option t’ 

return the  the current type name for an attribute or 

None if no such type exist. Z, bool, etc are the 

corresponding Coq types. The values that make up 

tuples are inhabitants of the denoted Coq types.  

Thus, we give the overall formal specification of 

a schema of relation (represented as a list of type 

names) as follows: 

 

 

 

 

 

 

 

 

 

Date and Darwen’s 8th RM1 prescription entitled 

EQUALITY has affirmed that Tutorial D shall 

support the equality comparison operator for every 

type T.  We need then to be able to compare 

schemas for equality.  Equality between arbitrary 

Coq types is undecidable, so we require decidable 

equality on type names as another parameter to the 

system, and is expressed with the following 

specification: 

 

 

 

 

Additionally, formalizing in dependent type theory 

often requires representing sets as setoids, i.e. types 

with an explicit equality relation. Thus, we require 

that for any type name, the Coq type T that it 

denotes satisfies the following properties (which we 

need in our future work for queries optimization 

verification): 

 

1. T must be a decidable setoid .i.e., equipped 

with a decidable equivalence relation. 

2. T must be a decidable total order .i.e., equipped 

with a decidable total ordering compatible with 

the setoid. 

 

Like decidable equality for type names, these 

properties on denotations are given as parameters to 

the system: Property (1) allows for equivalence 

relations on attributes types that are weaker than 

syntactic Leibniz equality. Property (2) is required 

because of the way we build sets of tuples, 

                                                           
1 RM: Relational Model 

Parameter tnameHeading  :  Set. 
Parameter tnameDenote  :  tnameHeading -> 
Set. 
 
Definition Schema :  Set  := list tnameHeading. 
 
 

Parameter  tnameHeading_dec_eq : 
       forall (x y: tname), {x=y} + {x< >y}. 
 
 

Fixpoint tnameDenote (t:tnameHeading) : Set := 
match t with 
    | Integer => Z 
    | Boolean => bool 
    | Char => string 
…  
    | Option t' => option (tnameDenote t') 
end. 
 

Inductive tnameHeading : Set := 
| Integer : tnameHeading  
| Boolean : tnameHeading 
| Char : tnameHeading 
|TUPLE:tnameHeading 
| RELATION: tnameHeading 
… 
| Option: tnameHeading -> tnameHeading. 
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B. Tuples (the body) 

Each attribute in a relation is of some type, a 

tuple associates a value of the appropriate type to 

each attribute. That is, a tuple is a heterogeneously-

typed list. The type of a tuple is given by a recursive, 

type-level function Tuple parameterized by some 

Schema S (defined above). In Coq, we specify a 

tuple as a list of pairs (value, type) represented here 

as (v,t), constructed by Cartesian product of latter 

pairs  and terminated by Coq’s unit type in order to 

mark up the end by nil. Unit is the Coq’s singleton 

data type that contains a sole inhabitant written tt, 

and predefined as: 

 

   

 

 

The Coq system provides a notation for lists, so that 

"cons v t" is noted "v :: t" (where:: is list cons). 

Formal specification of tuple type is given as 

follows: 

 

 

 

 

 

 

 

 

 

Tuples of the body of some relation are 

essentially iterated pairs of values terminated by a 

unit. For example: 

 

 

 

A tuple on such schema may be: 

 

 

 

 

We need several tuple manipulation functions in 

order to express the relational operations. For 

example, to perform product of tuples, we define the 

function FProdTuples that realize the operation of 

fuse tuples. The type of this function ensures that the 

schema of the resulting fused tuple is the 

concatenation of the input schemas: 

 

We also use the richness of Coq’s type system to 

help simplify reasoning about error cases. For 

instance, to project out the type name of a particular 

attribute A (represented by the position n) from a 

schema I, we need to provide a proof pf that n is less 

than the length of I: 

 

 

 

The operation of project a single attribute from a 

tuple uses attType in its type: 

 

 

 

C. Relations  

We can see relations as a finite set of types. Coq 

provides the “FSets” library composed of several 

packages. The library is coded as a standard ML-

style functor i.e., as first order parametric module, 

which requires the static determination of the 

corresponding module’s signature2.  

Then, the choice that we consider is how to 

represent finite sets in Coq. We assume that we 

could not use the “FSets” library directly. Because in 

Rel DBMS, the relation type must be computed from 

a schema at run-time, not before; obviously, it does 

not know table schemas until the user loads data at 

run-time (since modules signature has been already 

defined). For this, rather than try to encode such 

behavior using just modules, we modified the FSet 

library to be first-class using Coq’s type class 

mechanism [27]. 

Type classes are a recent addition to Coq 

presented as a solution to allow user overloading 

notations, operations and specifying with abstract 

structures by quantification on contexts3 across a 

class of types. They behave similarly to their Haskell 

counterparts which have been introduced to make 

ad-hoc polymorphism less ad hoc [28]. In informal 

semantic similarities description, we can say that 

Coq’s type class plays the role of relation variable 

relvar presented in Section II.  Classes instantiation 

is similar to the process of assigning some relations 

values to a given relvar having the same heading as 

also the same applied operators. 

We establish our work of specification on the basis 

of the Library Containers.SetInterface that defines 

the interface of typeclass-based finite sets. We have 

a class of types FSetInterface that is parameterized 

by a type elt of elements and a total ordering E over 

elt that can be used as specifications of finite sets. 

Here “Prop” indicates Coq’s proposition sort: 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2 A signature is a syntactic structure specifying the components 

that any implementation of a module must have. Thus, syntax for 

functor specifications is provided in signatures. 

 
3 Context here is in the sense of Coq, it means a sequence of local 

declarations and definitions 

 

Fixpoint Tuple (S: Schema) : Set := 
    match S with 
        | nil => unit 
        | v :: t => tnameDenote v * Tuple t 
end. 
 

Definition MySchema : Schema := 
      Z :: char :: Bool :: nil. 

FProdTuples (I J: Schema)(x: Tuple I)(y: Tuple J) 
: 
Tuple  (I ++ J). 
 

attType (I:Schema) (n:nat) (pf:n< length I) : tname. 
 

projTupleAtt (I: Schema) (n: nat) (pf: n < length I) 
   (t: Tuple I) : tnameDenote (attType  I   n  pf). 
 

Inductive unit : Set := 
      tt : unit. 

Definition aTuple : Tuple MySchema := 
          (100, ("Omar", (true, tt))). 
 

Class FSetInterface (elt: Set) (E: OrderedType elt) 
: Type := 
{ Fset : Set; (* the container type of finite sets *) 
(* operations *)                                                                           
empty : Fset; 
union : Fset -> Fset -> Fset; 
 inter : Fset -> Fset -> Fset; 
is_empty : Fset -> bool; 
 add : elt -> Fset -> Fset; 
...etc 
 (* the predicates *) 
In : elt -> Fset -> Prop; 
Definition Equal ‘{Set elt} s s' => forall a : elt,  
  In a s <-> In a s'; (* In is the membership 
function*) 
Definition Empty `{Set elt} s :=  
  forall a : elt, ~ In a s. 

http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#FSet
http://coq.inria.fr/distrib/8.3pl4/stdlib/Coq.Init.Logic.html#:type_scope:%27%7E%27_x
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#In
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We define the class FSetInterface of structures 

that implement finite sets. An instance of 

FSetInterface for an ordered type E contains the type 

FSet of elements elt. It also contains all the 

operations that these sets support: insertion, 

membership, etc. The specifications of these 

operations are in a different class. In addition, we 

specify a set of axioms that allow us to reason about 

the operations. 

Thus, formal specification of a relation in Date 

and Darwen’s model is defined over finite sets of 

schema typed tuples. Building relations requires 

defining a total ordering over tuples and interacting 

with the type class mechanism, and it is given as 

follows:  

 

 

 

 

We must also indicate that this specification is 

realizable otherwise, which we can do by providing 

a simple implementation using lists. In this case, we 

require the element types to be ordered. An 

alternative implementation of a finite set would be 

as a sorted list with a proof that the list contains no 

duplicates.  

In general, we have found that the richness of 

Coq, including support for ML-style modules, 

dependent types and type classes, coupled with 

abstraction and equality issues yields a set of 

tradeoffs that are difficult to evaluate.  

D. Relational Algebra A 

Date and Darwen have described a new 

relational algebra A [16]. The algebra A differs 

slightly from Codd's original algebra in some aspects 

but it is identical in a great part. 

As defined by Date and Darwen, a database is 

modeled using relations. We can represent a relation 

as a finite set of tuples over a list of types [17].  New 

relations are constructed using a basis of operations: 

Selection, Projection, Union, Permutation, 

Difference, and Cartesian product.  

This basis is relationally complete, and equal in 

expressive power to other relational formalisms, like 

relational calculus. We define the relational 

operations over relations. Then, we consider that 

formal specification of these relational operations 

will be given in terms of coq’s predefined functions. 

Though, we modify the definitions in such way that 

it will be adapted with the light changes introduced 

in Date and Darwen’s definitions of Algebra A. 

Union, difference, and selection are implemented 

in terms of the FSetInterface union, difference, and 

filter functions, respectively.  In Tutorial D, union 

dyadic r1 UNION r2 (where r1, r2 have the same 

headings) is semantically equivalent to the algebra A 

expression r1<OR> r2.   

Projection and product are defined using the 

generic fold function provided by the FSetInterface. 

Selection allows any Coq predicate that respects the 

setoid equality of the schema to be used.  

Projection is implemented by iterating through a 

set, projecting out each tuple individually. Cartesian 

product is slightly more complicated, requiring two 

iterations. To compute the product of two relations r1 

and r2, for each x   r1 we compute the set 

{FProdTuples x y | y  r2} and then union the 

results. 

We have indicated that our main mission will 

concern the verification task, that is showing that the 

Rel DBMS executes correctly queries with respect to 

a denotational semantics of Tutorial D and relations. 

Therefore, we need some lemmas to support basic 

reasoning.   

To prove the accuracy of our specified relational 

Algebra, we have shown that several standard 

equivalences are derivable from our definitions. 

Some equivalences are universally valid; for 

example, the commutativity of selection: 

          Select P1 (select P2   R) = select P2 (select P1   

R) 

Other equivalences only apply in the presence of 

constraints on relations. For example, let r1 and r2 be 

relations over schemas I and J, respectively, and let l 

indicate the attributes 0…|l|- 1. We have the 

conditional equivalences: 

 

 

 

 

Proving this statement requires reasoning about 

how projection of l can be effectuated through the 

nested iteration that defines the product. it may be 

possible to adapt an automated theorem prover for 

r2 <> empty -> proj l (prod r1 r2) = r1 
r2 = empty -> proj l (prod r1 r2) = empty 
 

Definition Relation (I: Schema) := 
FSetInterface (Tuple I). 
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relations (e.g., [29]) to Coq to reduce the proof 

complexity. 

 Challenges  

In what follows we highlight some challenges 

from our work of specification.  

Use dependent types in our definitions was a 

source of difficulties.  We found dependency useful 

to express schemas for operations and to rule out 

various error cases that would arise. Newer 

languages such as Epigram [30] provide better 

support for programming with dependent types. For 

Coq, several works ongoing to adapt many of these 

ideas, so we are hopeful that these difficulties will 

diminish. 

Another challenge is that the Coq modules are 

useful for controlling name spaces, but their second-

class nature makes it difficult to use them effectively 

for abstraction. Rather, we found core language 

mechanisms, such as dependent records and type 

classes, to be more useful than modules. 

Consequently, we avoided sophisticated use of the 

module system when possible. 

A final challenge is the formalization of algebra 

A. The inspiration for our work, however, is the 

formalization of the relational algebra in Agda found 

in [26]. Like that work, we use axiomatic finite sets; 

however, we opted for a more concrete tuple 

representation and a different, but equivalent, choice 

of base operations. 

Conclusion  

In this paper, we have given a formal 

specification of some key concept of that model 

using one of the most famous proof assistant system 

namely Coq proof assistant [19].  

We declare that we have settled for merely a few 

basic concepts but our study of formalization and 

formal specification constitute a preamble step to a 

complete demarche toward a verified object / 

relational data model and subsequently toward 

verified data bases management system.  

The implementation of the concepts of Date and 

Darwen in a DBMS is in full experimentation 

around the world, for instance the DBMS Rel that 

implements a significant portion of Date and 

Darwen's Tutorial D query language. Thus, the 

verification of this system appears necessary to 

prove its power and reliability in terms of 

correctness of development and in terms of security 

requirements during its running on complex 

environment and applications. What’s persists in our 

future work concerns especially the verification 

tasks, that is to say verifying that queries in Rel are 

executed correctly according to their specification. 

Writing a formal specification is already an 

improvement compared to standard approaches. 

Indeed, by using Coq proof assistant system, many 

ambiguities are resolved. Furthermore, Coq provide 

ways to check consistency of the specification 

allowing large complicated proofs. Thus, using 

software to assist formal specification and 

verification has been of great impact in whole 

process of development.   
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