Models & Optimisation and Mathematical Analysis Journal VVolume 01 Issue 02 (2012)

Formal Specification by Coq of Date and Darwen’s
Object/relational Model

Amel Benabbou

LITIO Laboratory — University of Oran
BP 1524, EI-M'Naouer, 31000
Oran, Algeria

henahhnii amel@vahon fr

Abstract— Development of databases software
systems would be provided with a high-level
specification, suitable for formal reasoning about
application-level security and correctness properties.
Formal specification is a key element of formal
methods. It can greatly increase comprehension of a
system by revealing inconsistencies, ambiguities, and
incompleteness that might occur. Thus,
implementation would be proven correct with respect
to this specification to ensure that a bug cannot lead to
non-conformance of properties or accidental
corruption. It is for these reasons that we see verified
DBMSs as a compelling challenge to the development
of software. As a step toward this goal, we establish in
this paper formalization through a formal specification
of some basis concepts in object/relational model
proposed by Date and Darwen, using the Coq proof
assistant system. We give the challenges acquired from
our experience using that proof tool. Our work is a
preamble step toward a fully-verified object/relational
DBMS.

Index Terms—Formal specification, proof assistant
system, Coq, verification, object/relational model.

introduction

Software databases systems inevitably grow in
scale and functionality. Because of this increase in
complexity, the likelihood of subtle errors is much
greater [1]. A major goal of software engineering is
to enable developers to construct systems that
operate reliably despite this complexity. One way of
achieving this goal is by modeling them in a formal
way [2, 3]. Formal modeling plays a key role in
building of high assurance and trusted software
databases systems. This modeling enables formal
reasoning about the system design that can be used
to prove that the system has certain properties [4, 5].
A distinguishing feature of high assurance systems is
that they are modeled mathematically using formal
methods [6, 7].

Formal methods consist of a set of techniques
and tools based on mathematical modeling and
formal logic that are used for specification,
development, proof and verification requirements
and designs in software systems, such as in
databases = management  systems  (DBMSS).
Particularly, they provide a mathematical framework
in which it is possible to ensure the correctness of
development and assurance in the validity of the
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results [8]. By defining languages with a clear
semantics, and making explicit how to reason on
these later.

Specification is a key element of deductive
formal methods; it’s the process of describing a
system and its desired properties [9]. Formal
specification uses a language with mathematically
defined syntax and semantics.

One current trend is to integrate different
specification languages, each able to handle a
different aspect of a system. Another is to handle
non-behavioral aspects of a system such as its
performance, security policies, architectural design,
and theoretical concepts, integrity constraints,
functional dependencies in Databases [10, 11, 12].
Formal specification can greatly increase our
understanding of a system by revealing
inconsistencies, ambiguities, and incompleteness
that might otherwise go undetected. Therefore, it
seems very interesting to use specialized software to
assist in the specification by means of Proof
Assistant system [13, 14, 15]

The goal of this paper is to give a formalization
of some key concepts of the orthogonal
object/relational model of Date and Darwen
proposed in [16], the different concepts are
expressed in terms of the type system which we have
presented in [17]. This type system has a pseudo-
algorithmic and grammatical description of all types
in such model, namely: scalar, tuple, and relation
types. Our algebraic grammar describes in detail the
complete specification of an inheritance model:
simple and multiple. An extension of this type
system is performed by a special type representing
null values [18]. Such an extension is prompted by a
position that favors the existence of null values in
object / relational model and proposes a semantic
expression. We describe, specially, a formal
specification for these concepts using Coq Proof
Assistant [19].

Coq Proof Assistant is designed to develop
mathematical proofs, and especially to write formal
specifications, implementations and to verify using
type-checking algorithm that the later are correct
with respect to their specification. Thus, it allows
interactively constructing formal proofs and supports
specification of static data, functions and definitions
which can be developed using the basic specification
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language Gallina in Cog. Using Curry-Howard
isomorphism [20, 21], programs, properties and
proofs are formalized in the same language called
Calculus of Inductive Constructions [22], that is a A -
calculus with a rich type system [23, 24].
Conveniently, the reasoning is at the same platform
with the specification. All above strong points of
Coqg make us to use it to finish our specification
work.

This article is organized as follows. Section 2 is a
definition of theoretical concepts of Date and
Darwen’s data model. In section 3 we present our
formal specification for most important relational
concepts in that model using the proof system Cog.
In section 4 we discuss the challenges we faced
using that proof environment of development in
building such specification. Finally, a conclusion
closes the paper.

Definition of basic concepts in date and
darwen’s data model

Date and Darwen have proposed a theoretical
basis for integration of a few object concepts in the
relational context [16]. In that model, it’s not
necessary to restructure the model to achieve the
object concepts. It is enough to expand domains to
new abstract data types, and allow inheritance and
sub-typing in order to take advantage of the object-
orientation features.

Date and Darwen have also proposed a query
language Tutorial D and relational algebra A. The
semantic links between these entities are modeled
through the concept of relation variables (relvar).
The DBMS Rel implements a significant portion of
Date and Darwen's Tutorial D query language.

Thus, Date and Darwen have given formal
definitions adapted to their vision of future
databases. We present such definitions as follows:

Definition 1 (Heading). A Heading {H} is a set of
ordered pairs <A, T> such as:

a. Ais the name of attribute in {H}.

b. T isthe declared type of the attribute A.

c. Two pairs <Az, T1>and <Ay, T> are

considered if A1 # A

Definition 2 (Tuple). Given a collection of types Ti
(i =1, 2 .. n where n=0), not necessarily all
distinct, a tuple t -over those types- is a set of n
ordered triplets of the form <A;,T;,vi>, such as v; is
the value of the attribute A; of type Ti.

Definition 3 (Body of relation). A body B, of a
relation r is a set of tuple ti. However, there may be
exist tuples t; that conform to the heading {H}
without that t; € B.

Definition 4 (Relation). A relation r is defined by
its heading {H,} and its body B,. The Heading {H}
represents the schema of the relation r.
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Given a heading {H}, a relation variable relvar
must be of type RELATION {H} [16]. The
instantiation of a relation variable relvar is done
explicitly during the operation of defining relvar, or
an empty relation if no explicit value is specified.

Formal specification of basic concepts by Coq
assistant proof

In this section, we describe a formal specification
by choosing an appropriate encoding of the
object/relational model and using an adequate
efficient environment for formal reasoning and
specification, namely Coq assistant proof system.

Formalization of basic concepts is given for
many reasons:

Basic concepts and algebra make
foundation constructs of the model,
indeed; their specification establishes
formal semantics that conspire to take a
formal and rigorous comprehension of
these concepts.

Specification of a concept is strongly linked
to another concept such as with relation
and tuple.

Specification of queries is based on the
specification of the basic concepts (a
query concerns necessarily a relation).

Passing to verification tasks is necessarily
preceded by a detailed specification of
every concept.

Relational algebra has a standard definition in
terms of set theory [25]; therefore, we consider that
our work of specification deals with realizing both
sets and relational algebra (see section D) in coq.
We describe briefly in an informal way the key
relational concepts in that model and how specifying
them within Cog.

Object/relational model of Date and Darwen is
modeled using relations. In such model, a relation is
represented by some heading and a body which is
simply a finite set of tuples over a set of couples
(attribute, type). To simplify our work and
accordance the typing environment of Coq, we
consider that an attribute in a heading is represented
by its type. So, the heading is described as a list of
types. The list of types that describes the attribute is
then known as the schema for the relation. Tuples in
a relation are indexed by a set of attribute names.
Again, for reason of simplification, we use the
position of an element as the attribute name.

There are many ways to represent relations in
Coq [19]. For example, in [26] it is suggested that
schemas should be represented as functions from a
finite set of attribute names to type names, but in
practice, we found that a concrete encoding using a
list of type names vyields a more workable
representation. Another choice was how to represent
relations as finite sets. Finite sets are a common
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abstraction and Coq conveniently provides them as a
standard library.

We provide now formal specifications of these
concepts using Coq assistant proof system:

A. Schema of relation (the heading)

We define the schema for a relation as a list of
type names which denoted tnameHeading. Each type
in the heading are is generated recursively from a
type system defined in [17] and we might define
tnameHeading as the inductive definition;

Inductive tnameHeading : Set :=
| Integer : tnameHeading

| Boolean : tnameHeading

| Char : tnameHeading

| TUPLE:tnameHeading

| RELATION: tnameHeading

| Option: tnameHeading -> tnameHeading.

We must indicate here that “Set” refers to Coq’s
predefined sort or type universe [19], not sets in the
sense of relations (in Gallina language, the term
tnameHeading is called specification). Type TUPLE
and RELATION will be given in next sections.
Option constructor is used to denote a particular type
that contains no values (null values ” L ) which we
have presented in [17] and treated within the type
system given in [18] through our in-depth study of
Date and Darwen’s object/ relational model [16].

Type names can be mapped to Coq types by a
denotation function thameDenote. The definition for
type names below and the denotation function are
parameters to the system so that users can easily add
new constructors to the set of schema types. We
define this denotation function as:

Fixpoint tnameDenote (t:tnameHeading) : Set :=
match t with

| Integer =>Z

| Boolean => bool

| Char => string

| Option t' => option (tnameDenote t')
end.

The function tnameDenote is defined as
recursive (via Fixpoint coq’s key world). In this
definition, tnameDenote take t as argument of type
tnameHeading on which recursion is organized, and
return some type represented as universe “Set” since
tnameDenote a general function for defining types.
defined tnameDenote recursive functions contain a
filter (with coq’s match key word) on the argument
t, so that it is led to give in fist the value of the
function when the argument is nat, boolean, and so
on, then the value of the function when the argument

16

is of the form "option t* " with the possibility of
using the value of the same functionint".

In Coq, generally, option types are used instead
of not.found exceptions. Our idea of choosing use of
option types is due to try extending the
tnameHeading of the partial function Option t:
tnameHeading — tnameHeading, by the special
value I such that Option t’: tnameHeading —
tnameHeading U {L } is a total function. Option t’
return the the current type name for an attribute or
None if no such type exist. Z, bool, etc are the
corresponding Coq types. The values that make up
tuples are inhabitants of the denoted Coq types.

Thus, we give the overall formal specification of
a schema of relation (represented as a list of type
names) as follows:

Parameter tnameHeading : Set.
Parameter thameDenote : tnameHeading ->
Set.

Definition Schema : Set :=list tnameHeading.

Date and Darwen’s 8" RM? prescription entitled
EQUALITY has affirmed that Tutorial D shall
support the equality comparison operator for every
type T. We need then to be able to compare
schemas for equality. Equality between arbitrary
Coq types is undecidable, so we require decidable
equality on type names as another parameter to the
system, and is expressed with the following
specification:

Parameter tnameHeading_dec_eq:
forall (x y: tname), {x=y} + {x< >y}.

Additionally, formalizing in dependent type theory
often requires representing sets as setoids, i.e. types
with an explicit equality relation. Thus, we require
that for any type name, the Coq type T that it
denotes satisfies the following properties (which we
need in our future work for queries optimization
verification):

1. T must be a decidable setoid .i.e., equipped
with a decidable equivalence relation.

2. T must be a decidable total order .i.e., equipped
with a decidable total ordering compatible with
the setoid.

Like decidable equality for type names, these
properties on denotations are given as parameters to
the system: Property (1) allows for equivalence
relations on attributes types that are weaker than
syntactic Leibniz equality. Property (2) is required
because of the way we build sets of tuples,

1 RM: Relational Model
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B. Tuples (the body)

Each attribute in a relation is of some type, a
tuple associates a value of the appropriate type to
each attribute. That is, a tuple is a heterogeneously-
typed list. The type of a tuple is given by a recursive,
type-level function Tuple parameterized by some
Schema S (defined above). In Coq, we specify a
tuple as a list of pairs (value, type) represented here
as (v,t), constructed by Cartesian product of latter
pairs and terminated by Coq’s unit type in order to
mark up the end by nil. Unit is the Coq’s singleton
data type that contains a sole inhabitant written tt,
and predefined as:

Inductive unit : Set :=
tt : unit.

The Coq system provides a notation for lists, so that
"cons v t" is noted "v :: t" (where:: is list cons).
Formal specification of tuple type is given as
follows:

Fixpoint Tuple (S: Schema) : Set :=
match S with
| nil => unit
| v t=>tnameDenote v * Tuple t
end.

Tuples of the body of some relation are
essentially iterated pairs of values terminated by a
unit. For example:

Definition MySchema : Schema :=
7.+ char - Ronl -+ nil

A tuple on such schema may be:

Definition aTuple : Tuple MySchema :=
(100, ("Omar", (true, tt))).

We need several tuple manipulation functions in
order to express the relational operations. For
example, to perform product of tuples, we define the
function FProdTuples that realize the operation of
fuse tuples. The type of this function ensures that the
schema of the resulting fused tuple is the
concatenation of the input schemas:

We also use the richness of Coq’s type system to
help simplify reasoning about error cases. For
instance, to project out the type name of a particular
attribute A (represented by the position n) from a
schema I, we need to provide a proof pf that n is less
than the length of I:

attType (I:Schema) (n:nat) (pf:n< length I) : thame.

The operation of project a single attribute from a
tuple uses attType in its type:
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projTupleAtt (I: Schema) (n: nat) (pf: n < length I)
(t: Tuple I) : tnameDenote (attType I n pf).

C. Relations

We can see relations as a finite set of types. Coq
provides the “FSets” library composed of several
packages. The library is coded as a standard ML-
style functor i.e., as first order parametric module,
which requires the static determination of the
corresponding module’s signature?,

Then, the choice that we consider is how to
represent finite sets in Cog. We assume that we
could not use the “FSets” library directly. Because in
Rel DBMS, the relation type must be computed from
a schema at run-time, not before; obviously, it does
not know table schemas until the user loads data at
run-time (since modules signature has been already
defined). For this, rather than try to encode such
behavior using just modules, we modified the FSet
library to be first-class using Coq’s type class
mechanism [27].

Type classes are a recent addition to Coq

presented as a solution to allow user overloading
notations, operations and specifying with abstract
structures by quantification on contexts® across a
class of types. They behave similarly to their Haskell
counterparts which have been introduced to make
ad-hoc polymorphism less ad hoc [28]. In informal
semantic similarities description, we can say that
Coq’s type class plays the role of relation variable
relvar presented in Section Il. Classes instantiation
is similar to the process of assigning some relations
values to a given relvar having the same heading as
also the same applied operators.
We establish our work of specification on the basis
of the Library Containers.Setinterface that defines
the interface of typeclass-based finite sets. We have
a class of types FSetinterface that is parameterized
by a type elt of elements and a total ordering E over
elt that can be used as specifications of finite sets.
Here “Prop” indicates Coq’s propaosition sort:

FProdTuples (I J: Schema)(x: Tuple I)(y: Tuple J)

;l"uple I++7]).

Class FSetInterface (elt: Set) (E: OrderedType elt)
: Type :=
{ Fset : Set; (* the container type of finite sets *)
(* operations *¥)
empty : Fset;
union : Fset -> Fset -> Fset;
inter : Fset -> Fset -> Fset;
is_empty : Fset -> bool;
add : elt -> Fset -> Fset;
...etc
(* the predicates *)
In : elt -> Fset -> Prop;
Definition Equal ‘{Set elt} s s' => forall a : elt,
Inas <->Inas'; (* Inis the membership
function*)
Definition Empty *{Set elt} s :=
foralla:elt ~Inas.
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We define the class FSetinterface of structures
that implement finite sets. An instance of
FSetInterface for an ordered type E contains the type

FSet of elements elt. It also contains all the
operations that these sets support: insertion,
membership, etc. The specifications of these

operations are in a different class. In addition, we
specify a set of axioms that allow us to reason about
the operations.

Thus, formal specification of a relation in Date
and Darwen’s model is defined over finite sets of
schema typed tuples. Building relations requires
defining a total ordering over tuples and interacting
with the type class mechanism, and it is given as
follows:

Definition Relation (I: Schema) :=
FSetInterface (Tuple I).

We must also indicate that this specification is
realizable otherwise, which we can do by providing
a simple implementation using lists. In this case, we
require the element types to be ordered. An
alternative implementation of a finite set would be
as a sorted list with a proof that the list contains no
duplicates.

In general, we have found that the richness of
Cog, including support for ML-style modules,
dependent types and type classes, coupled with
abstraction and equality issues yields a set of
tradeoffs that are difficult to evaluate.

D. Relational Algebra A

Date and Darwen have described a new
relational algebra A [16]. The algebra A differs
slightly from Codd's original algebra in some aspects
but it is identical in a great part.
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As defined by Date and Darwen, a database is
modeled using relations. We can represent a relation
as a finite set of tuples over a list of types [17]. New
relations are constructed using a basis of operations:
Selection,  Projection,  Union,  Permutation,
Difference, and Cartesian product.

This basis is relationally complete, and equal in
expressive power to other relational formalisms, like
relational calculus. We define the relational
operations over relations. Then, we consider that
formal specification of these relational operations
will be given in terms of coq’s predefined functions.
Though, we modify the definitions in such way that
it will be adapted with the light changes introduced
in Date and Darwen’s definitions of Algebra A.

Union, difference, and selection are implemented
in terms of the FSetInterface union, difference, and
filter functions, respectively. In Tutorial D, union
dyadic r1 UNION r, (where ry, r2 have the same
headings) is semantically equivalent to the algebra A
expression r1i<OR> r».

Projection and product are defined using the
generic fold function provided by the FSetinterface.
Selection allows any Coq predicate that respects the
setoid equality of the schema to be used.

Projection is implemented by iterating through a
set, projecting out each tuple individually. Cartesian
product is slightly more complicated, requiring two
iterations. To compute the product of two relations ry
and r;, for each x € r we compute the set
{FProdTuples x y | ye rz} and then union the
results.

We have indicated that our main mission will
concern the verification task, that is showing that the
Rel DBMS executes correctly queries with respect to
a denotational semantics of Tutorial D and relations.
Therefore, we need some lemmas to support basic
reasoning.

To prove the accuracy of our specified relational
Algebra, we have shown that several standard
equivalences are derivable from our definitions.
Some equivalences are universally valid; for
example, the commutativity of selection:

Select P1 (select P2 R) = select P2 (select P1
R)

Other equivalences only apply in the presence of
constraints on relations. For example, let r1 and r, be
relations over schemas | and J, respectively, and let |
indicate the attributes 0...]I- 1. We have the
conditional equivalences:

r2 <> empty -> projl (prod r1 1) =11
r2 = empty -> proi l (prod r1 r2) = empty

Proving this statement requires reasoning about
how projection of | can be effectuated through the
nested iteration that defines the product. it may be
possible to adapt an automated theorem prover for
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relations (e.g., [29]) to Coq to reduce the proof
complexity.

Challenges

In what follows we highlight some challenges
from our work of specification.

Use dependent types in our definitions was a
source of difficulties. We found dependency useful
to express schemas for operations and to rule out
various error cases that would arise. Newer
languages such as Epigram [30] provide better
support for programming with dependent types. For
Coq, several works ongoing to adapt many of these
ideas, so we are hopeful that these difficulties will
diminish.

Another challenge is that the Cogq modules are
useful for controlling name spaces, but their second-
class nature makes it difficult to use them effectively
for abstraction. Rather, we found core language
mechanisms, such as dependent records and type
classes, to be more wuseful than modules.
Consequently, we avoided sophisticated use of the
module system when possible.

A final challenge is the formalization of algebra
A. The inspiration for our work, however, is the
formalization of the relational algebra in Agda found
in [26]. Like that work, we use axiomatic finite sets;
however, we opted for a more concrete tuple
representation and a different, but equivalent, choice
of base operations.

Conclusion

In this paper, we have given a formal
specification of some key concept of that model
using one of the most famous proof assistant system
namely Coq proof assistant [19].

We declare that we have settled for merely a few
basic concepts but our study of formalization and
formal specification constitute a preamble step to a
complete demarche toward a verified object /
relational data model and subsequently toward
verified data bases management system.

The implementation of the concepts of Date and
Darwen in a DBMS is in full experimentation
around the world, for instance the DBMS Rel that
implements a significant portion of Date and
Darwen's Tutorial D query language. Thus, the
verification of this system appears necessary to
prove its power and reliability in terms of
correctness of development and in terms of security
requirements during its running on complex
environment and applications. What’s persists in our
future work concerns especially the verification
tasks, that is to say verifying that queries in Rel are
executed correctly according to their specification.

Writing a formal specification is already an
improvement compared to standard approaches.
Indeed, by using Coq proof assistant system, many
ambiguities are resolved. Furthermore, Coq provide
ways to check consistency of the specification
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allowing large complicated proofs. Thus, using
software to assist formal specification and
verification has been of great impact in whole
process of development.
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