
Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

14

Abstract— Development of databases software

systems would be provided with a high-level

specification, suitable for formal reasoning about

application-level security and correctness properties.

Formal specification is a key element of formal

methods. It can greatly increase comprehension of a

system by revealing inconsistencies, ambiguities, and

incompleteness that might occur. Thus,

implementation would be proven correct with respect

to this specification to ensure that a bug cannot lead to

non-conformance of properties or accidental

corruption. It is for these reasons that we see verified

DBMSs as a compelling challenge to the development

of software. As a step toward this goal, we establish in

this paper formalization through a formal specification

of some basis concepts in object/relational model

proposed by Date and Darwen, using the Coq proof

assistant system. We give the challenges acquired from

our experience using that proof tool. Our work is a

preamble step toward a fully-verified object/relational

DBMS.

Index Terms—Formal specification, proof assistant

system, Coq, verification, object/relational model.

introduction

Software databases systems inevitably grow in

scale and functionality. Because of this increase in

complexity, the likelihood of subtle errors is much

greater [1]. A major goal of software engineering is

to enable developers to construct systems that

operate reliably despite this complexity. One way of

achieving this goal is by modeling them in a formal

way [2, 3]. Formal modeling plays a key role in

building of high assurance and trusted software

databases systems. This modeling enables formal

reasoning about the system design that can be used

to prove that the system has certain properties [4, 5].

A distinguishing feature of high assurance systems is

that they are modeled mathematically using formal

methods [6, 7].

Formal methods consist of a set of techniques

and tools based on mathematical modeling and

formal logic that are used for specification,

development, proof and verification requirements

and designs in software systems, such as in

databases management systems (DBMSs).

Particularly, they provide a mathematical framework

in which it is possible to ensure the correctness of

development and assurance in the validity of the

results [8]. By defining languages with a clear

semantics, and making explicit how to reason on

these later.

Specification is a key element of deductive

formal methods; it’s the process of describing a

system and its desired properties [9]. Formal

specification uses a language with mathematically

defined syntax and semantics.

One current trend is to integrate different

specification languages, each able to handle a

different aspect of a system. Another is to handle

non-behavioral aspects of a system such as its

performance, security policies, architectural design,

and theoretical concepts, integrity constraints,

functional dependencies in Databases [10, 11, 12].

Formal specification can greatly increase our

understanding of a system by revealing

inconsistencies, ambiguities, and incompleteness

that might otherwise go undetected. Therefore, it

seems very interesting to use specialized software to

assist in the specification by means of Proof

Assistant system [13, 14, 15]

The goal of this paper is to give a formalization

of some key concepts of the orthogonal

object/relational model of Date and Darwen

proposed in [16], the different concepts are

expressed in terms of the type system which we have

presented in [17]. This type system has a pseudo-

algorithmic and grammatical description of all types

in such model, namely: scalar, tuple, and relation

types. Our algebraic grammar describes in detail the

complete specification of an inheritance model:

simple and multiple. An extension of this type

system is performed by a special type representing

null values [18]. Such an extension is prompted by a

position that favors the existence of null values in

object / relational model and proposes a semantic

expression. We describe, specially, a formal

specification for these concepts using Coq Proof

Assistant [19].

Coq Proof Assistant is designed to develop

mathematical proofs, and especially to write formal

specifications, implementations and to verify using

type-checking algorithm that the later are correct

with respect to their specification. Thus, it allows

interactively constructing formal proofs and supports

specification of static data, functions and definitions

which can be developed using the basic specification

Formal Specification by Coq of Date and Darwen’s

Object/relational Model

 Amel Benabbou Safia Nait Bahloul

 LITIO Laboratory – University of Oran LITIO Laboratory – University of Oran

BP 1524, El-M'Naouer, 31000 BP 1524, El-M'Naouer, 31000

 Oran, Algeria Oran, Algeria

 benabbou_amel@yahoo.fr nait-bahloul.safia@univ-oran.dz

Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

15

language Gallina in Coq. Using Curry-Howard

isomorphism [20, 21], programs, properties and

proofs are formalized in the same language called

Calculus of Inductive Constructions [22], that is a λ -

calculus with a rich type system [23, 24].

Conveniently, the reasoning is at the same platform

with the specification. All above strong points of

Coq make us to use it to finish our specification

work.

This article is organized as follows. Section 2 is a

definition of theoretical concepts of Date and

Darwen’s data model. In section 3 we present our

formal specification for most important relational

concepts in that model using the proof system Coq.

In section 4 we discuss the challenges we faced

using that proof environment of development in

building such specification. Finally, a conclusion

closes the paper.

 Definition of basic concepts in date and

darwen’s data model
Date and Darwen have proposed a theoretical

basis for integration of a few object concepts in the

relational context [16]. In that model, it’s not

necessary to restructure the model to achieve the

object concepts. It is enough to expand domains to

new abstract data types, and allow inheritance and

sub-typing in order to take advantage of the object-

orientation features.

 Date and Darwen have also proposed a query

language Tutorial D and relational algebra A. The

semantic links between these entities are modeled

through the concept of relation variables (relvar).

The DBMS Rel implements a significant portion of

Date and Darwen's Tutorial D query language.

Thus, Date and Darwen have given formal

definitions adapted to their vision of future

databases. We present such definitions as follows:

Definition 1 (Heading). A Heading {H} is a set of

ordered pairs <A, T> such as:

a. A is the name of attribute in {H}.

b. T is the declared type of the attribute A.

c. Two pairs <A1, T1> and <A2, T2> are

considered if A1 ≠ A2

Definition 2 (Tuple). Given a collection of types Ti

(i = 1, 2, ..., n, where n 0), not necessarily all

distinct, a tuple t -over those types- is a set of n

ordered triplets of the form <Ai,Ti,vi>, such as vi is

the value of the attribute Ai of type Ti.

Definition 3 (Body of relation). A body Br of a

relation r is a set of tuple ti. However, there may be

exist tuples tj that conform to the heading {H}

without that tj B.

Definition 4 (Relation). A relation r is defined by

its heading {Hr} and its body Br. The Heading {H}

represents the schema of the relation r.

Given a heading {H}, a relation variable relvar

must be of type RELATION {H} [16]. The

instantiation of a relation variable relvar is done

explicitly during the operation of defining relvar, or

an empty relation if no explicit value is specified.

Formal specification of basic concepts by Coq

assistant proof

In this section, we describe a formal specification

by choosing an appropriate encoding of the

object/relational model and using an adequate

efficient environment for formal reasoning and

specification, namely Coq assistant proof system.

Formalization of basic concepts is given for

many reasons:

 Basic concepts and algebra make

foundation constructs of the model,

indeed; their specification establishes

formal semantics that conspire to take a

formal and rigorous comprehension of

these concepts.

 Specification of a concept is strongly linked

to another concept such as with relation

and tuple.

 Specification of queries is based on the

specification of the basic concepts (a

query concerns necessarily a relation).

 Passing to verification tasks is necessarily

preceded by a detailed specification of

every concept.

Relational algebra has a standard definition in

terms of set theory [25]; therefore, we consider that

our work of specification deals with realizing both

sets and relational algebra (see section D) in coq.

We describe briefly in an informal way the key

relational concepts in that model and how specifying

them within Coq.

Object/relational model of Date and Darwen is

modeled using relations. In such model, a relation is

represented by some heading and a body which is

simply a finite set of tuples over a set of couples

(attribute, type). To simplify our work and

accordance the typing environment of Coq, we

consider that an attribute in a heading is represented

by its type. So, the heading is described as a list of

types. The list of types that describes the attribute is

then known as the schema for the relation. Tuples in

a relation are indexed by a set of attribute names.

Again, for reason of simplification, we use the

position of an element as the attribute name.

There are many ways to represent relations in

Coq [19]. For example, in [26] it is suggested that

schemas should be represented as functions from a

finite set of attribute names to type names, but in

practice, we found that a concrete encoding using a

list of type names yields a more workable

representation. Another choice was how to represent

relations as finite sets. Finite sets are a common

http://en.wikipedia.org/wiki/Christopher_J._Date
http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/D_%28data_language_specification%29
http://en.wikipedia.org/wiki/Query_language

Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

16

abstraction and Coq conveniently provides them as a

standard library.

 We provide now formal specifications of these

concepts using Coq assistant proof system:

A. Schema of relation (the heading)

 We define the schema for a relation as a list of

type names which denoted tnameHeading. Each type

in the heading are is generated recursively from a

type system defined in [17] and we might define

tnameHeading as the inductive definition:

We must indicate here that “Set” refers to Coq’s

predefined sort or type universe [19], not sets in the

sense of relations (in Gallina language, the term

tnameHeading is called specification). Type TUPLE

and RELATION will be given in next sections.

Option constructor is used to denote a particular type

that contains no values (null values ” ”) which we

have presented in [17] and treated within the type

system given in [18] through our in-depth study of

Date and Darwen’s object/ relational model [16].

Type names can be mapped to Coq types by a

denotation function tnameDenote. The definition for

type names below and the denotation function are

parameters to the system so that users can easily add

new constructors to the set of schema types. We

define this denotation function as:

The function tnameDenote is defined as

recursive (via Fixpoint coq’s key world). In this

definition, tnameDenote take t as argument of type

tnameHeading on which recursion is organized, and

return some type represented as universe “Set” since

tnameDenote a general function for defining types.

defined tnameDenote recursive functions contain a

filter (with coq’s match key word) on the argument

t, so that it is led to give in fist the value of the

function when the argument is nat, boolean, and so

on, then the value of the function when the argument

is of the form "option t’ " with the possibility of

using the value of the same function in t '.

In Coq, generally, option types are used instead

of not.found exceptions. Our idea of choosing use of

option types is due to try extending the

tnameHeading of the partial function Option t:

tnameHeading → tnameHeading, by the special

value such that Option t’ : tnameHeading →

tnameHeading ∪ { } is a total function. Option t’

return the the current type name for an attribute or

None if no such type exist. Z, bool, etc are the

corresponding Coq types. The values that make up

tuples are inhabitants of the denoted Coq types.

Thus, we give the overall formal specification of

a schema of relation (represented as a list of type

names) as follows:

Date and Darwen’s 8th RM1 prescription entitled

EQUALITY has affirmed that Tutorial D shall

support the equality comparison operator for every

type T. We need then to be able to compare

schemas for equality. Equality between arbitrary

Coq types is undecidable, so we require decidable

equality on type names as another parameter to the

system, and is expressed with the following

specification:

Additionally, formalizing in dependent type theory

often requires representing sets as setoids, i.e. types

with an explicit equality relation. Thus, we require

that for any type name, the Coq type T that it

denotes satisfies the following properties (which we

need in our future work for queries optimization

verification):

1. T must be a decidable setoid .i.e., equipped

with a decidable equivalence relation.

2. T must be a decidable total order .i.e., equipped

with a decidable total ordering compatible with

the setoid.

Like decidable equality for type names, these

properties on denotations are given as parameters to

the system: Property (1) allows for equivalence

relations on attributes types that are weaker than

syntactic Leibniz equality. Property (2) is required

because of the way we build sets of tuples,

1 RM: Relational Model

Parameter tnameHeading : Set.
Parameter tnameDenote : tnameHeading ->
Set.

Definition Schema : Set := list tnameHeading.

Parameter tnameHeading_dec_eq :
 forall (x y: tname), {x=y} + {x< >y}.

Fixpoint tnameDenote (t:tnameHeading) : Set :=
match t with
 | Integer => Z
 | Boolean => bool
 | Char => string
…
 | Option t' => option (tnameDenote t')
end.

Inductive tnameHeading : Set :=
| Integer : tnameHeading
| Boolean : tnameHeading
| Char : tnameHeading
|TUPLE:tnameHeading
| RELATION: tnameHeading
…
| Option: tnameHeading -> tnameHeading.

Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

17

B. Tuples (the body)

Each attribute in a relation is of some type, a

tuple associates a value of the appropriate type to

each attribute. That is, a tuple is a heterogeneously-

typed list. The type of a tuple is given by a recursive,

type-level function Tuple parameterized by some

Schema S (defined above). In Coq, we specify a

tuple as a list of pairs (value, type) represented here

as (v,t), constructed by Cartesian product of latter

pairs and terminated by Coq’s unit type in order to

mark up the end by nil. Unit is the Coq’s singleton

data type that contains a sole inhabitant written tt,

and predefined as:

The Coq system provides a notation for lists, so that

"cons v t" is noted "v :: t" (where:: is list cons).

Formal specification of tuple type is given as

follows:

Tuples of the body of some relation are

essentially iterated pairs of values terminated by a

unit. For example:

A tuple on such schema may be:

We need several tuple manipulation functions in

order to express the relational operations. For

example, to perform product of tuples, we define the

function FProdTuples that realize the operation of

fuse tuples. The type of this function ensures that the

schema of the resulting fused tuple is the

concatenation of the input schemas:

We also use the richness of Coq’s type system to

help simplify reasoning about error cases. For

instance, to project out the type name of a particular

attribute A (represented by the position n) from a

schema I, we need to provide a proof pf that n is less

than the length of I:

The operation of project a single attribute from a

tuple uses attType in its type:

C. Relations

We can see relations as a finite set of types. Coq

provides the “FSets” library composed of several

packages. The library is coded as a standard ML-

style functor i.e., as first order parametric module,

which requires the static determination of the

corresponding module’s signature2.

Then, the choice that we consider is how to

represent finite sets in Coq. We assume that we

could not use the “FSets” library directly. Because in

Rel DBMS, the relation type must be computed from

a schema at run-time, not before; obviously, it does

not know table schemas until the user loads data at

run-time (since modules signature has been already

defined). For this, rather than try to encode such

behavior using just modules, we modified the FSet

library to be first-class using Coq’s type class

mechanism [27].

Type classes are a recent addition to Coq

presented as a solution to allow user overloading

notations, operations and specifying with abstract

structures by quantification on contexts3 across a

class of types. They behave similarly to their Haskell

counterparts which have been introduced to make

ad-hoc polymorphism less ad hoc [28]. In informal

semantic similarities description, we can say that

Coq’s type class plays the role of relation variable

relvar presented in Section II. Classes instantiation

is similar to the process of assigning some relations

values to a given relvar having the same heading as

also the same applied operators.

We establish our work of specification on the basis

of the Library Containers.SetInterface that defines

the interface of typeclass-based finite sets. We have

a class of types FSetInterface that is parameterized

by a type elt of elements and a total ordering E over

elt that can be used as specifications of finite sets.

Here “Prop” indicates Coq’s proposition sort:

2 A signature is a syntactic structure specifying the components

that any implementation of a module must have. Thus, syntax for

functor specifications is provided in signatures.

3 Context here is in the sense of Coq, it means a sequence of local

declarations and definitions

Fixpoint Tuple (S: Schema) : Set :=
 match S with
 | nil => unit
 | v :: t => tnameDenote v * Tuple t
end.

Definition MySchema : Schema :=
 Z :: char :: Bool :: nil.

FProdTuples (I J: Schema)(x: Tuple I)(y: Tuple J)
:
Tuple (I ++ J).

attType (I:Schema) (n:nat) (pf:n< length I) : tname.

projTupleAtt (I: Schema) (n: nat) (pf: n < length I)
 (t: Tuple I) : tnameDenote (attType I n pf).

Inductive unit : Set :=
 tt : unit.

Definition aTuple : Tuple MySchema :=
 (100, ("Omar", (true, tt))).

Class FSetInterface (elt: Set) (E: OrderedType elt)
: Type :=
{ Fset : Set; (* the container type of finite sets *)
(* operations *)
empty : Fset;
union : Fset -> Fset -> Fset;
 inter : Fset -> Fset -> Fset;
is_empty : Fset -> bool;
 add : elt -> Fset -> Fset;
...etc
 (* the predicates *)
In : elt -> Fset -> Prop;
Definition Equal ‘{Set elt} s s' => forall a : elt,
 In a s <-> In a s'; (* In is the membership
function*)
Definition Empty `{Set elt} s :=
 forall a : elt, ~ In a s.

http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#set
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#FSet
http://coq.inria.fr/distrib/8.3pl4/stdlib/Coq.Init.Logic.html#:type_scope:%27%7E%27_x
http://coq.inria.fr/pylons/contribs/files/Containers/v8.3/Containers.SetInterface.html#In

Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

18

We define the class FSetInterface of structures

that implement finite sets. An instance of

FSetInterface for an ordered type E contains the type

FSet of elements elt. It also contains all the

operations that these sets support: insertion,

membership, etc. The specifications of these

operations are in a different class. In addition, we

specify a set of axioms that allow us to reason about

the operations.

Thus, formal specification of a relation in Date

and Darwen’s model is defined over finite sets of

schema typed tuples. Building relations requires

defining a total ordering over tuples and interacting

with the type class mechanism, and it is given as

follows:

We must also indicate that this specification is

realizable otherwise, which we can do by providing

a simple implementation using lists. In this case, we

require the element types to be ordered. An

alternative implementation of a finite set would be

as a sorted list with a proof that the list contains no

duplicates.

In general, we have found that the richness of

Coq, including support for ML-style modules,

dependent types and type classes, coupled with

abstraction and equality issues yields a set of

tradeoffs that are difficult to evaluate.

D. Relational Algebra A

Date and Darwen have described a new

relational algebra A [16]. The algebra A differs

slightly from Codd's original algebra in some aspects

but it is identical in a great part.

As defined by Date and Darwen, a database is

modeled using relations. We can represent a relation

as a finite set of tuples over a list of types [17]. New

relations are constructed using a basis of operations:

Selection, Projection, Union, Permutation,

Difference, and Cartesian product.

This basis is relationally complete, and equal in

expressive power to other relational formalisms, like

relational calculus. We define the relational

operations over relations. Then, we consider that

formal specification of these relational operations

will be given in terms of coq’s predefined functions.

Though, we modify the definitions in such way that

it will be adapted with the light changes introduced

in Date and Darwen’s definitions of Algebra A.

Union, difference, and selection are implemented

in terms of the FSetInterface union, difference, and

filter functions, respectively. In Tutorial D, union

dyadic r1 UNION r2 (where r1, r2 have the same

headings) is semantically equivalent to the algebra A

expression r1<OR> r2.

Projection and product are defined using the

generic fold function provided by the FSetInterface.

Selection allows any Coq predicate that respects the

setoid equality of the schema to be used.

Projection is implemented by iterating through a

set, projecting out each tuple individually. Cartesian

product is slightly more complicated, requiring two

iterations. To compute the product of two relations r1

and r2, for each x  r1 we compute the set

{FProdTuples x y | y r2} and then union the

results.

We have indicated that our main mission will

concern the verification task, that is showing that the

Rel DBMS executes correctly queries with respect to

a denotational semantics of Tutorial D and relations.

Therefore, we need some lemmas to support basic

reasoning.

To prove the accuracy of our specified relational

Algebra, we have shown that several standard

equivalences are derivable from our definitions.

Some equivalences are universally valid; for

example, the commutativity of selection:

 Select P1 (select P2 R) = select P2 (select P1

R)

Other equivalences only apply in the presence of

constraints on relations. For example, let r1 and r2 be

relations over schemas I and J, respectively, and let l

indicate the attributes 0…|l|- 1. We have the

conditional equivalences:

Proving this statement requires reasoning about

how projection of l can be effectuated through the

nested iteration that defines the product. it may be

possible to adapt an automated theorem prover for

r2 <> empty -> proj l (prod r1 r2) = r1
r2 = empty -> proj l (prod r1 r2) = empty

Definition Relation (I: Schema) :=
FSetInterface (Tuple I).

Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

19

relations (e.g., [29]) to Coq to reduce the proof

complexity.

 Challenges

In what follows we highlight some challenges

from our work of specification.

Use dependent types in our definitions was a

source of difficulties. We found dependency useful

to express schemas for operations and to rule out

various error cases that would arise. Newer

languages such as Epigram [30] provide better

support for programming with dependent types. For

Coq, several works ongoing to adapt many of these

ideas, so we are hopeful that these difficulties will

diminish.

Another challenge is that the Coq modules are

useful for controlling name spaces, but their second-

class nature makes it difficult to use them effectively

for abstraction. Rather, we found core language

mechanisms, such as dependent records and type

classes, to be more useful than modules.

Consequently, we avoided sophisticated use of the

module system when possible.

A final challenge is the formalization of algebra

A. The inspiration for our work, however, is the

formalization of the relational algebra in Agda found

in [26]. Like that work, we use axiomatic finite sets;

however, we opted for a more concrete tuple

representation and a different, but equivalent, choice

of base operations.

Conclusion

In this paper, we have given a formal

specification of some key concept of that model

using one of the most famous proof assistant system

namely Coq proof assistant [19].

We declare that we have settled for merely a few

basic concepts but our study of formalization and

formal specification constitute a preamble step to a

complete demarche toward a verified object /

relational data model and subsequently toward

verified data bases management system.

The implementation of the concepts of Date and

Darwen in a DBMS is in full experimentation

around the world, for instance the DBMS Rel that

implements a significant portion of Date and

Darwen's Tutorial D query language. Thus, the

verification of this system appears necessary to

prove its power and reliability in terms of

correctness of development and in terms of security

requirements during its running on complex

environment and applications. What’s persists in our

future work concerns especially the verification

tasks, that is to say verifying that queries in Rel are

executed correctly according to their specification.

Writing a formal specification is already an

improvement compared to standard approaches.

Indeed, by using Coq proof assistant system, many

ambiguities are resolved. Furthermore, Coq provide

ways to check consistency of the specification

allowing large complicated proofs. Thus, using

software to assist formal specification and

verification has been of great impact in whole

process of development.

References

[1] S. Vangalur, Alagar, V. S. Lakshmanan, F. Sadri (Eds.),”

Formal Methods in Databases and Software Engineering”,
Proceedings of the Workshop on Formal Methods in

Databases and Software Engineering, Montreal, Canada, 15-

16 May 1992.

[2] É. Jaeger, T. Hardin,”A Few Remarks About Formal

Development of Secure Systems”, CoRR abs/0902.3861:
2009.

[3] A. van Lamsweerde,” Building Formal Models for Software

Requirements”, APSEC 2000: 134- 7th Asia-Pacific

Software Engineering Conference (APSEC 2000), 5-8

December 2000, Singapore. IEEE Computer Society 2000.

[4] D. Bell, D, ”Foundations and Model”. M74- 244, The

MITRE Corp., Bedford MA,E. and LaPadula, L.J. Secure

Computer Systems: Mathematical. May 1973

[5] W. Cheng, X. Zhang, J. Liu, “A Secure Policy Model for

Secure Database System Based on Extended Object
Hierarchy”, Journal of Software, vol.14, No.5, 2003.

[6] U. Sonali; Bibighaus, David; Dinolt, George; Levin. E.

Timothy, “Evaluation of Program Specification and
Verification Tools for High Assurance Development”.

Naval Postgraduate School (U.S.) 2003-09-00 Information

Systems Security Studies and Research (CISR) Papers.

[7] J. Park, J. Choi, “Formal Security Policy Model for a

Common Criteria Evaluation,” ICACT2007,pp.277-281,
Feb. 12-14, 2007.

[8] E. M. Clarke, J. M. Wing, “Formal Methods: State of the

Art and Future Directions”. ACM Comput. Surv. 28(4):
626-643 (1996).

[9] A.van Lamsweerde, “Formal specification: a roadmap”,
ICSE - Future of SE Track 2000: 147-159. 22nd

International Conference on on Software Engineering,

Future of Software Engineering Track, ICSE 2000,
Limerick Ireland, June 4-11, 2000. ACM 2000

[10] A. Bayley, H. Zhu, “Formal specification of the variants and
behavioural features of design patterns”. Journal of Systems

and Software 83(2): 209-221, 2010.

[11] J. Julliand O. Kouchnarenko, Eds., B 2007,” Formal
Specification and Development in B”, 7th International

Conference of B Users, Besanc¸on, France, January 17-19,

2007, Proceedings, ser. Lecture Notes in Computer Science,
vol. 4355. Springer, 2006.

[12] P. Frey, R. Radhakrishnan, H. Carter,” A Formal

Specification and Verification Framework for Time Warp-

Based Parallel Simulation”, IEEE Transaction on Software

Engineering. Vol. 28, No. 1, January 2002

[13] S. Owre , N. Shankar,” A Brief Overview of PVS”,.

Theorem Proving in Higher Order Logics Lecture Notes in

Computer Science, , Volume 5170/2008, 22-27, 2008.

[14] Y. Bertot, “A Short Presentation of Coq”, Theorem Proving

in Higher Order Logics Lecture Notes in Computer Science,
Volume 5170/2008, 12-16, 2008

[15] K. Slind ,M. Norrish, “A Brief Overview of HOL4”,

Theorem Proving in Higher Order Logics Lecture Notes in

Computer Science, Volume 5170/2008, 28-32,2008.

[16] C.J. Date, H. Darwen, “Databases, Types, and Relational
Model: The Third Manifesto”, (3 rd edition); Addison-

Wesley, 2007.

[17] A. Benabbou, S.Nait Bahloul, Y.Amghar, K.

Rahmouni,” Generation of an Orthogonal Object /

Relational type system”, Wotic 2009, WorkShop

http://en.wikipedia.org/wiki/Christopher_J._Date
http://en.wikipedia.org/wiki/Hugh_Darwen
http://en.wikipedia.org/wiki/D_%28data_language_specification%29
http://en.wikipedia.org/wiki/Query_language
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Alagar:Vangalur_S=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lakshmanan:Laks_V=_S=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Sadri:Fereidoon.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hardin:Th=eacute=r=egrave=se.html
http://www.informatik.uni-trier.de/~ley/db/journals/corr/corr0902.html#abs-0902-3861
http://www.informatik.uni-trier.de/~ley/db/conf/apsec/apsec2000.html#Lamsweerde00
http://calhoun.nps.edu/public/handle/10945/7046
http://calhoun.nps.edu/public/handle/10945/7046
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wing:Jeannette_M=.html
http://www.informatik.uni-trier.de/~ley/db/journals/csur/csur28.html#ClarkeW96
http://www.informatik.uni-trier.de/~ley/db/conf/icse/future2000.html#Lamsweerde00a
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bayley:Ian.html
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss83.html#BayleyZ10
http://www.informatik.uni-trier.de/~ley/db/journals/jss/jss83.html#BayleyZ10
http://www.springerlink.com/content/?Author=Sam+Owre
http://www.springerlink.com/content/?Author=Natarajan+Shankar
http://www.springerlink.com/content/j558576105327462/
http://www.springerlink.com/content/978-3-540-71065-3/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/?Author=Yves+Bertot
http://www.springerlink.com/content/l8g837v121u8vl1t/
http://www.springerlink.com/content/978-3-540-71065-3/
http://www.springerlink.com/content/978-3-540-71065-3/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/?Author=Konrad+Slind
http://www.springerlink.com/content/?Author=Michael+Norrish
http://www.springerlink.com/content/t76735276tu041v4/
http://www.springerlink.com/content/978-3-540-71065-3/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/

Models & Optimisation and Mathematical Analysis Journal Volume 01 Issue 02 (2012)

20

international sur les Technologies de l'Information et de la

Communication 24 – 25, Agadir, Maroc, Décembre 2009.

[18] A.Benabbou, S.Nait Bahloul, Y.Amghar, K.
Rahmouni,”Semantic expression of incomplete information

in the object / relational model”, 1st SIGSPATIAL ACM

GIS 2009 International Workshop on Querying and Mining
Uncertain Spatio-Temporal Data November 3, 2009, Seattle,

WA, USA.

[19] The Coq development team, The Coq proof assistant

reference manual, LogiCal Project, 2012. [Online].

Available: http://coq.inria.fr

[20] J.H. Gallier, “on the Correspondence between Proofs and

lambda-Terms”, Technical Reports (CIS) Scholarly
Commons university of University of Pennsylvania. 1993.

[21] M. Heine Sørensen, P. Urzyczyn,” Lectures on the curry-

howard isomorphism”. University of Copenhagen 1998.

[22] Y. Bertot , P. Castéran , G. Huet , C. Paulin-Mohring,”

Interactive Theorem Proving and Program Development:

Coq'Art: The Calculus of Inductive Constructions” (Texts in

Theoretical Computer Science). Springer; 1 edition, 2004.

[23] H. Barendregt,” Lambda Calculi with Types”, Handbook of
Logic in Computer Science, Volume 1, Abramsky, Gabbay,

Maibaum (Eds.), Clarendon 1992.

[24] A. Church,” A Formulation of the Simple Theory of Types”,

The Journal of Symbolic Logic, 1940

[25] P.R. Halmos,”Naive Set Theory”, D. Van Nostrand
Company, Princeton, NJ, 1960. Reprinted, Springer-Verlag,

New York, NY, 1974.

[26] C. Gonzalia,”Relations in Dependent type Theory”. PhD

Thesis, Chalmers University of Technology, 2006.

[27] M.Sozeau, N. Oury.” First-Class Type Classes”. In

Otmane Ait Mohamed, C.M., Tahar, S., eds.:

Theorem Proving in Higher Order Logics, 21th

International Conference. Volume 5170 of Lecture

Notes in Computer Science, Springer (2008) 278-

293, August 18-21, 2008.

[28] P.Wadler, S.Blott. “How To Make ad-hoc

Polymorphism Less ad hoc”. In ACM Symposium on

Principles of Programming Languages (POPL),

Austin, Texas, pages 60–76, 1989.

[29] C. Sinz, “System description: Ara - an automatic theorem

prover for relation algebras”. In Proc. CADE-17, 2000.

[30] C. McBride, J. McKinna, “Epigram: Practical Programming
with Dependent Types”. Advanced Functional

Programming: 130-177, 2004.

http://coq.inria.fr/
http://www.amazon.com/Yves-Bertot/e/B001K6J5EA/ref=ntt_athr_dp_pel_4/186-0280854-3890300
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3/186-0280854-3890300?_encoding=UTF8&field-author=Pierre%20Cast%C3%A9ran&search-alias=digital-text
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2/186-0280854-3890300?_encoding=UTF8&field-author=G.%20Huet&search-alias=digital-text
http://www.amazon.com/s/ref=ntt_athr_dp_sr_1/186-0280854-3890300?_encoding=UTF8&field-author=C.%20Paulin-Mohring&search-alias=digital-text
http://en.wikipedia.org/wiki/Naive_Set_Theory_%28book%29
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Oury:Nicolas.html
http://www.informatik.uni-trier.de/~ley/db/conf/afp/afp2004.html#McBride04
http://www.informatik.uni-trier.de/~ley/db/conf/afp/afp2004.html#McBride04

