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Abstract—In this paper we will present a heuristic 

method to solve the Multiple Knapsack Problem. The 

proposed method is an improvement of the IRT heuristic 

described in [2].the experimental study shows that our 

improvement leads some gain in time and solution qual-

ity against IRT, MTHM, Mulknap and ILOG CPLEX. 
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XII.  Introduction  
The Multiple Knapsack Problem (MKP) is a 

variant of the knapsack problem (KP) whose reso-

lution is much more difficult, the fact that we have 

this problem in areas as different application than 

the economy, industry, transport, cargo loading and 

distributed computing, gives it a great practical 

interest [1]. 

Viewpoint Artificial Intelligence, the problem 

of Multiple Knapsack is strongly NP-complete. 

This means that the resolution of this problem can-

not be done in polynomial time. In other words, an 

exact algorithm is required for optimal resolution.  

The objective of this work is to improve the 

performance of a heuristic proposed by IRT Laala-

oui [2], and solve the problem of multiple Knap-

sack in a way we approached using local search.  

I. Presentation of the Multiple 

Knapsack Problem 
The Multiple Knapsack Problem (MKP) is a gen-

eralization of the standard 0-1Knapsack Problem 

where instead of considering only one knapsack, 

one tries to fill m knapsacks of different capacities 

[3]. Consider a set N = {1... n} of items to be load-

ed into m knapsacks of capacity    with i {1, ... 

m}. Each item jN is characterized by its 

weight  , and its profit   and its decision 

ble     which is worth 1 if the item j is loaded into 

the knapsack i and 0 otherwise. It is then to find m 

disjoint subsets of N (where each subset corre-

sponds to filling a knapsack) that maximize the 

total profit made by the sum of the selected items. 

The mathematical formulation of the problem 

MKP is as follows: 
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Where     ,    and    are positive integers. 

In order to avoid any trivial case, we make the 

following assumptions. 

 All items have a chance to be packed (at 

least in the largest knapsack): 

         

            

           
                     

 The smallest knapsack can be filled at least 

by the smallest item: 

 

         

            

           
                        

 There is no knapsack which can be filled 

with all items of N: 
∑   

 
    

           
                      

II. resolution method of MKP 
The approaches proposed in the literature to solve 

the problems of the family of the backpack are 

either exact methods are heuristics. The exact 

methods are able to solve a problem to optimality 

but in exponential time [4]. Heuristic methods 

provide an approximate solution, good quality in 

reasonable periods of time [4]. Heuristics are either 

simple heuristic are meta-heuristics.  

1. The exact method 

The exact methods proposed in the literature to 

solve problem MKP are based on the Branch-and-

Bound (B &B). 

 Ingargiola and Korsh [5] proposed a 

branch-and-bound algorithm which used a 

reduction procedure based on dominance 

relationships between pairs of items. 

 Hung and Fisk [6] proposed a method 

based Branch and Bound with depth-first 

strategy as a journey. The upper bounds 

are obtained using Lagrangian relaxation, 

with a decreasing scheduling capacity   . 
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 The algorithm of Martello and Toth [7] 

improves proposed by Hung and Fisk with 

the calculation of upper bounds using sur-

rogate relaxation and taking the minimum 

of the Lagrangian upper bounds and surro-

gate relaxation method.  

 Martello and Toth[8] proposed an algo-

rithm (bound and bound) algorithm im-

proves the Martello and Toth[7]a powerful 

base of B&B to solve the MKP. This algo-

rithm, called MTM (Method Martello and 

Toth), applies heuristics Greedy, which in-

volves solving a series of problems with m 

single Knapsack.  

 Pisinger[9] improved the algorithm MTM 

by incorporating an efficient algorithm for 

calculating higher and better reduction 

rules for determining the items that can be 

set to zero terminals and a method that at-

tempts to reduce the ability of backpacks. 

This new algorithm is called Mulknap. 

Power Mulknap located in allocating 

100000 items in one second. So Pisinger 

has succeeded with Mulknap resolve cases 

problems with very large (n = 100 000, m 

= 10) in a second. But at the same time it 

fails to resolve cases in smaller problem (n 

= 45, m = 15), when the ratio n/m is be-

tween 2 and 5 (2 ≤ n/m ≤5).  

 Fukunaga and Korf [10] proposed the bin-

completion method is a technique based 

branch- and-bound. It uses the strategy 

depth first. Each node of the search tree 

represents a maximum possible allocation 

for a particular knapsack member.  

 A.Fukunaga[11] improved bin-completion 

method in the case of relatively large bod-

ies (n = 100). But the ratio n/m is the major 

problem in all existing algorithms.  

2. Existing solvers 

There are many solvers have been developed 

for solving the problem of the backpack. We dis-

tinguish between free software and commercial 

software. Commercial software often has superior 

performance to the free solvers. There are two 

principal existing business software is: The com-

mercial solver IBM ILOG CPLEX and XPRESS-

MP solver. There exist also two principal free 

software are: GLPK and Boob ++. 

3. Heuristics 

Heuristic methods have been proposed for the 

problem of multiple bag back in order to find good 

solutions within a reasonable time, heuristic 

MTHM, CRH and IRT are proposed to solve the 

problem MKP. 

 The heuristic (MTHM) of Martello and 

Toth [12] is a very efficient heuristic to 

solve the problem MKP It takes place in 

stages present in the following Figure. 
Fig. 1 : Heuristic MTHM 

 The heuristic RCH described by Lalami et 

al. in [13] is a heuristic with a polynomial 

time complexity for solving the MKP. Un-

fortunately, this heuristic resolve any prob-

lems that could be solved using optimality 

Mulknap i.e. instances of problems with a 

large n/m ratio, which is where the 

Mulknap gives the best results in less se-

cond. The authors fail to describe the inter-

esting case of problems with a small ratio 

n/m. 

 In [2], Laalaoui proposed a heuristic to 

solve the problem completely dependent 

exchanges found in MTHM and also to in-

crease the efficiency of the latter method 

(improved profit). This new heuristic inte-

grates three simple heuristics (Replace-

One-By-One, Replace-Two-By-One and 

Replace-One-By-Two) with MTHM by 

two different techniques: the first tech-

nique is simple (SRT) and the second itera-

tive (IRT).  

4. Metaheuristics Methods 

Among the proposed literature to solve the 

problem MKP methods that uses genetic algo-

rithms metaheuristic methods, methods are lo-

cated: HGGA (Hybrid Grouping GA) [14], 

WCGA (Weighted Coding GA) [15], Ugga 

(Undominated Grouping GA) [16] and Repre-

sentation-RSGA (Switching GA) [17]. 

III. Local search heuristic for MKP 
Local Search is used by many metaheuristic. It 

is about making incremental improvements to the 

current solution through a basic transformation 

until no improvement is possible. The solution is 

called local optimum found with respect to the 

transformation used, as shown in Fig.2.  

Fig. 2 : Local Search 

Heuristic:  MTHM 

Input: n,  
 
 ,    ,   

,z,   

Output :  
 
 ,z 

Begin 

    [ Initial solution ] : Procedure GREEDYS 

    [ Rearrangement ]  

    [First improvement ]  

    [Second improvement ]  

End 
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Technically, the local search consists of a series of 

transformations of the solution to improve it every 

time. The current solution S is replaced by a better 

solution S‟ N(S) in its vicinity. The process stops 

when it is no longer possible to find-improving 

solution in the vicinity of S, such that the algorithm 

written Fig. 3 
Fig. 3 : Algorithm for Local Search 

Our proposal to solve the problem MKP with local 

search method is using the following steps:  

 Step 01: initial solution; 

 Step 02: Perturbation solution 

 Step 03: improve the solution; 

 Step 04: repeating the process a number of 

times. 

1. Initial solution 

For the initial solution of this method we will use 

the IRT technique written by Y. Laaloui in [2]. 

2. Perturbation solution 

We know that one of the disadvantages of IRT and 

MTHM is the lack of randomness .This drawback 

severely limits the ability to better search space 

exploration.  

In our new technical we introduce some random-

ness to the solution of step disturbance. The princi-

ple of perturbation solution is to randomly remove 

one item or several items of the solution as men-

tioned in the procedure Perturbation. 

3. Improve the solution 

 For the third step the procedures for exchanging 

items is applied (Replace-One-By-One, Re-

place-Two-By-One, Replace-One-By-Two) and 

the steps are repeated for a number of times. 

The figure (Fig .4) shows the general algorithm 

of the method of local search for MKP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 :Local Search Heuristic for MKP 

IV. Experimental Results 
To measure the effectiveness of our work, we 

have implemented in C programming language, 

this choice is justified by the speed of the lan-

guage. And we used the system Lunix (Ubuntu) 

as a platform for development, since it is widely 

used in the academic community, and to use shell 

scripts. The technical Mulknap work is written in 

C
13

 .While the code of the implementation 

MTHM is written in FORTRAN
14

and we con-

verted to C using the f2c converter.  

We used the optimization tool IBM ILOG 

CPLEX commercial solver version 12.2.5. All 

techniques are established in the same environ-

ment using the GCC compiler. All tests were 

performed on a 2.2 GHz Intel Core Duo 2 proces-

sor with 2GB of RAM. We have used A. Fukuna-

ga's data-set which was used in [16][17]. This 

                                                           
13http://www.diku.dk/Pisinger/codes.html 
14http://www.or.deis.unibo.it/staff-pages/Martello/cvitae.html 

Algorithm:  Local Search 

Input: S 

Output : N 

best  true 

Whilebest = truedo 

      best  false 

for (S‟  N(S)) do 

if (S‟ is best of S) 

SS‟ 

best  true 

return 

http://www.diku.dk/Pisinger/codes.html
http://www.or.deis.unibo.it/staff-pages/Martello/cvitae.html
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benchmark is a set of 12 problem instances, four 

instances in each one of the three types: strongly 

correlated, weakly correlated and multiple subset-

sum. The number of knapsacks is 100; the number 

of items is 300 in each problem instance.  

Results of our experimental study are shown in 

tables 1, this contains a comparison to IRT, 

MTHM, Mulknap techniques and IBM ILOG 

CPLEX solver on a data-set from literature [16,17], 

It is clear that the method attendant gives a result 

better than Mulknap and CPLEX solver either as a 

solution or as a time over the local search method 

for MKP improves the results obtained by the IRT 

technique with a time greater than the time of the 

latter method, although it remains our proposal 

novella usable in real time because time does not 

exceed one second. 

 

 

 
TABLE 1 : RESULTS ON UNCORRELATED,STRONGLY 

CORRELATED AND MULTIPLE SUBSET-SUM INSTANCES 

COMPARED TO IRT ,MTHM , MUMKNAP TECHNIQUES AND IBM 

ILOG CPLEX SOLVER . TIME COLUMNS SHOW THE TIME IN 

SECONDS. 

V. Conclusion 
In this article we described an improvement of 

IRT technique. The proposed method succeeds to 

give better results compared to IRT, Mulknap and 

CPLEX with reasonable. 

The future work on this new heuristic approach 

includes a depth experimental study in large-scale 

data-sets. 
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