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Abstract-System on chip multi calculator (CPU and 

GPU) is a promoted filed to parallelize application 

thanks to the multi-core GPU architecture. GPUs 

(Graphic Processing Unit) ensure the parallelism on 

the chip and discharge the Central Processing Unit 

(CPU). The specification of scheduling and timing on 

GPUs had been always a research problematic. 

MARTE is an efficient semi formal tool for specifica-

tion thanks to the several diagrams of UML and the 

new profiles provided by MARTE which treats the 

software, hardware and scheduling of the specified 

SoC. But it still none valid specification because it isn’t 

proved. That’s why we propose to couple   MARTE 

with the formal method Event B to have a valid and 

proved specification and to validate the task schedul-

ing on the GPU. After having a valid specification a 

second phase of executable code generation from Event 

B specification is essential to execute parallel applica-

tions on the GPU. CUDA is an efficient programming 

language on GPUs because it offers new tools for 

parallel programming.  

Index Terms 

 GPU, MARTE, Scheduling, Timing  Event B, Re-

finements, Code generation, CUDA. 

1. INTRODUCTION 

A System on Chip (SoC) is a total electronic 

system integrated on one chip. A SoC can be 

constituted of a CPU, a memory (DRAM), a bus 

and a specialized unit of processing according to 

the SoC‟s function. In the last years the Graphic 

processing Unit (GPU) started to be essential in 

SoCs. GPUs permit to execute parallel tasks on 

the SoC.  

To specify SoCs we need specialized tools such 

as UML
10

/ MARTE (Modeling and Analysis of 

Real-Time and Embedded Systems) which offer a 

support to cover all the phases of SoC develop-

ment and to specify hardware and software SoC‟s 

aspects. But this specification misses the mathe-

matic improves because it‟s informal so it can‟t 

be considered valid. To solve this problem the 

proposed solution is to couple the UML/MARTE 

                                                           
10UML: Unified Modeling Language  

with a formal tool to have a sure specification 

based on mathematic notions and successive re-

finements.  

We are interested to coupling UML/MARTE to 

the formal method B-event which is an extension 

of B method. Many works have proposed ap-

proaches to translate UML diagrams to B specifi-

cation. The work made by Laleau [1] proposes a 

tool of automatic generation of class and state-

transition diagram to B abstract machines Using 

OCaml language in Rose Programming Environ-

ment. But he found some limits of semantics of 

the concepts which cause the user intervention to 

complete the generated specification. Then Le-

dang [2] proposed an approach to translate the 

comportment diagrams because according to him 

the previous works have interested just to static 

diagrams. He has concentrated on collaboration 

diagram by considering it as layers of objects. He 

proposed the notion of calling-called to link be-

tween layers and generated abstract machines. 

We can say that Ledang [2] has created an effec-

tive tool to translate UML comportment diagrams 

to B specification. In addition, to complete his 

works, Ledang [3] has created a tool named Ar-

goUML+B which permit to generate B specifica-

tions from UML diagrams. This tool has given 

good results in the field of UML translation to B 

specification and it has been developed using 

Java to avoid limits founded in Laleau‟s work[1]. 

Based on this works we propose an approach of 

coupling UML/MARTE to B-event specification 

to have proved and verified specification thanks 

to B-event.  

After specifying our SoC we need to generate 

an executable code on GPU from the MARTE 

specification using the proved Event B specifica-

tion as an intermediate. Model Driven Engineer-

ing (MDE) proposes an approach to generate 

executable code from a model throw successive 

transformations of the semi-formal specification. 

In this field several works have been proposed by 
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Wendell [4][5] to generate OpenCL
11

 code from a 

GPU MARTE specification in order to provide a 

tool of code generation for none specialized in 

parallel programming to develop their applica-

tions.  Wendell proposed an MDE approach of 

specification, modeling and generation of 

OpenCL applications. A first specification has 

been done using UML/MARTE and ARRAYOL 

of GPU architecture and the Conjugate Gradien 

algorithm, then a successive transformations us-

ing MOF/QVT (Meta-Object Facility Que-

ry/View/Transformation) result an executable 

OpenCL code on GPU.[4] Another work which 

studies a H.263 video compression (Downscal-

ing) application where a  preliminary MARTE 

specification of the downscaler has been done 

using Gaspard2. Then an OpenCL valid code has 

been generated from Gaspard2 specification.[5] 

We are going to generate a pre-code CUDA 

(Compute Unified Device Language) from 

UML/MARTE specification but after transform-

ing this later into Event B specification to guaran-

tee its validity. 

This paper is divided into several sections, sec-

tion 2 defines MARTE specification. The section 

3 gives a brief description of Event B. In section 

4 we describe GPU‟s architecture. Then we pre-

sent our proposition of GPU specification in sec-

tion 5 and we treat a study case of GPU specifica-

tion using UML/MARTE, coupling MARTE with 

Event B and extracting a CUDA code of vector 

addition algorithm using Event B refinements. 

Finally we present our conclusion and some per-

spectives. 

2. MARTE 

The MARTE (Modeling Analysis Real Time 

Embedded systems) profile is an extension of 

UML to complete the missing tools of embedded 

systems modeling. MARTE was created by 

“ProMarte” consortium for OMG (Object Man-

agement Group) users. [6] MARTE is composed 

of four packages: foundations, design model, 

analysis model and annexes. Each package con-

tains several profiles which permit specifying, 

modeling, analyzing and verifying an embedded 

                                                           
11 OpenCL: Open Computing Language 

real time system.  

 

 

Fig 1. MARTE architecture 

MARTE has improved the UML specification 

because: 

 It distinguishes the hardware part from 

the software part using Hardware Resource Mod-

eling (HRM) profile and Software Resource 

Modeling (SRM) profile. 

 It permits to allocate the software appli-

cation on the hardware resources thanks to Allo-

cation profile (Alloc). 

 It permits timing and scheduling model-

ing. 

 It permits performance and scheduling 

analysis using Performance Analysis Modeling 

(PAM) profile and Schedulability Analysis mod-

eling (SAM) profile.  

Several works have used MARTE profile for 

system modeling especially real time embedded 

system thanks to its efficient tools (profiles). We 

mention the work of remote controlled robot 

specification [7] where they used MARTE for 

real time constraints modeling. They stereotyped 

the classes with SchedulableResource stereotype 

in class diagram and they added timing observa-

tion (reference) in sequence diagram to illustrate 

the timing constraints of remote controlled robot 

system.  Another paper where they dealt with 

time specification in an automotive system of an 

ignition control and knock correction in the case 

of four stroke engine. In a 4-stroke engine a cycle 

is composed of four phases: Intake, Compression, 

Combustion and Exhaust. This phases where 

represented by a timing diagram to illustrate the 

timing properties in addition to the MARTE no-

tions of TimedEvent and TimedProcessing used in 

the state-transition diagram.[8] The MoPCom  

approach which is a co-design methodology to 

generate VHDL codes has also used MARTE to 

describe real-time properties and perform the 

platform modeling. In addition to UML diagrams, 

the MARTE profiles SRM, HRM and Alloc have 

been essential in the process of VHDL code gen-

eration.[9] MARTE was also a base of a method-

ology approach for high level modeling and mod-

el+code generation for embedded real time sys-

tems. The methodology consist of specifying a 

system with UML and MARTE profile then the 

specification become a source to model and code 

generation of real time components and schedul-

ing analysis. [10] MARTE became an essential 

element in real time embedded systems specifica-

tion because it offers a multitude tools (profiles) 
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for modeling time constraints, scheduling and 

performance of systems. 

 

3. EVENT B 

Event B is an enriched extension of the formal 

method B created by J. R Abrial [11] for system 

specification, design and coding. It is based on 

Set theory and it specifies the system by abstract 

machines, operations and successive refinements 

which permit to prove, to verify and to validate 

the specified system.  

Event B is based on MODEL notion which de-

scribes the labeled transaction of the system.  A 

MODEL is composed of a static part which con-

tains the states, its invariants and its properties 

and a dynamic part containing transitions 

(events). A MODEL has a name, variants, invari-

ants and Events. A MODEL is completed by a 

formalism celled the CONTEXT. It plays an im-

portant role in MODEL parameterization and 

instantiation. A CONTEXT has also a name, Sets, 

Invariants.[12][13] Each MODEL can reference a 

CONTEXT and many refinements which con-

cretes models and contexts as it is shown in the 

figure 2.  

 

 

Fig 2. Refinements of models and contexts 

 

The Event B method is efficient because it uses 

tools like Atelier B
12

 and the platform RODIN 

(Rigorous Open Development Environment for 

Complex Systems). This platform is a tool to 

develop and to prove Event B specification under 

Eclipse environment. [12] The main objective of 

RODIN is to create a methodology and support-

ing open tool platform for cost-effective, rigorous 

development of complex, dependable software 

systems and services. [14] 

 

4. GPU ARCHITECTURE 

Graphic Processing Units have a high perfor-

mance processors dedicated to graphics pro-

cessing. Originally, GPUs were oriented to accel-

erating graphics rendering functionality. Lately 

they are used to perform different kinds of gen-

eral purpose computations in a parallel way to 

minimize application‟s runtime.[15]  

  GPU is a multi-core architecture used to en-

hance intensive computing and to discharge the 

CPU. A GPU is composed of a Global memory 

(DRAM) and a set of Streaming Multiprocessor 

(SM). Each SM is constituted of a set of Stream-

ing Processor (SP) and each SP is linked to a 

local memory (Register memory). And the SPs of 

a SM are linked to a shared memory. The multi-

core architecture of GPU ensures its efficiency 

and its capacity of computing. [16]  

      

 

Fig 3. GeForce GT GPU architecture 

 

In Nvidia architecture tasks are executed using 

SIMD (Singel Instruction Multiple data) blocs 

written in CUDA. [17] CUDA (Compute Unified 

                                                           
12 Atelier B is a tool that permit operational use of the 

method  B : http://www.atelierb.eu 
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Device Architecture) provides a set of software 

libraries, an execution environment and a multi-

tude drivers for different languages of program-

ming (C,C++,…). CUDA is an extension of C 

language for programming on NVIDIA GPU. 

The computations on a GPU are programmed as 

kernel functions. A kernel program describes the 

execution of a serial thread on a GPU. The kernel 

is launched by the host CPU with specified num-

bers of blocks and threads, where a block repre-

sents a set of a certain number of threads, and all 

blocks in that kernel launch have the same num-

bers of threads. The total number of threads is the 

number of blocks times the number of threads per 

block. [18] Since there is a number of processing 

units on GPU a solution of scheduling is needed 

to organize the execution on GPU.  

  

5. PROPOSED APPROACH VIA A CASE 

STUDY 

Our main objective is to specify a GPU with 

different tools and to generate a valid executable 

code.   

We propose to use UML diagrams and MARTE 

profile to specify a SoC with:  

i. Hardware Resource Modeling (HRM) to 

specify the SoC components,  

ii. Software Resource Modeling (SRM) for 

modeling the applications that will be executed 

on the SoC.  

iii. Allocation (Alloc) profile to allocate the 

software on the hardware components.  

iv. Timing profile for time constraints 

modeling.  

v. Schedulability Analysis Modeling 
(SAM) for scheduling modeling and analysis.  

After specifying our SoC with MARTE profile 

we propose to couple it with Event B specifica-

tion to make it valid, sure and proved with Event 

B rigorous tools. We have proposed a set of rules 

for transformation of MARTE models into Event 

B specification.  

 

Fig 4. Proposed approach of SOC specifica-

tion 

Once a valid, sure and correct specification of 

SoC has been carried out, it could be exploited to 

generate an executable code to be run on the SoC 

hardware resources (CPU/GPU). We propose to 

do a set of refinements of Event B specification 

to generate a parallel executable code written in 

CUDA language which is rich of parallel imple-

mentation on NVIDIA GPU architectures. 

To test our approach we used a case study of 

GPU architecture. We are going to specify a GPU 

architecture using MARTE and Event B with an 

application (Vector addition) which will be exe-

cuted on GPU architecture. 

5.1. GPU specification 

5.1.1 GPU architecture 

We are using a GeForce GT 210 GPU to im-

plement our case study. It is composed of 16 

CUDA cores. The relation between internal GPU 

components is illustrated in the component dia-

gram where each component is stereotyped by 

MARTE stereotypes for each type component 

(hwcomponent, hwRam, hwBus,  hwCompu-

tingResource,…). 

Event B specifica-

tion 
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tion 

1 

2 

3 



Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014) 

 

 

34 

 

 

Fig 5. Component diagram of GPU architec-

ture 

 

The properties of GPU compoenent are illus-

trated by a GPU class where all the GPU details 

are presented. 

 

Fig 6. GPU class 

 

5.1.2 Link between hardware architecture 

and software architecture 

In order to treat the parallel execution of appli-

cations on GPUs we have chosen a simple algo-

rithm of Arrays addition. 

 

 

Fig 7. Vector Addition 

 

The sequential algorithm of Vector addition of 

two vectors A, B (of N dimension) resulting a 

vector C is illustrated thereafter. It is necessary to 

run through a loop to execute the addition opera-

tion. So the time spent in executing vector addi-

tion is doubled.  

 

Algorithm Vector Addition    

Input:  

A,B: array [1..N] d’entier 

Output:C 

Begin 

    i: entier  

    for (i=0 à N ; i++)  

                           C[i]= A[i]*B[i] ; 

     Endfor 

End 

 

To optimize the runtime the vector addition al-

gorithm can be executed in a parallel way on 

GPU architecture thanks to its multi-cores. Each 

addition operation of an element C[i] is calculat-

ed in a CUDA core basing the element A[i] and 

the element B[i]. [19] In this case the execution 

of vector addition follows these steps: 

 Vector A loading on the CPU; 

 Vector B loading on the CPU; 

 Data (vector A, vector B) transfers from 

CPU into GPU; 

 Calculating C: kernel parallel execution 

on GPU which is illustrated in the next algorithm; 

 Data transfers (vector C) from GPU into 

CPU; 

 Vector C display. 
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Algorithm Kernel  

Input: A,B 

Output:C 

Begin 

    int nmbr_bloc,nmbr_thread,affect; 

    affect=nbre_bloc/nbre_thread; 

    if (affect >=0) then 

      Execute (Vector-addition (C[1], C[2],…, 
C[N])) ; 

     endif 

End 

Vector-Addition (C[i]) 

 Begin   

              C[i] = A[i]+B[i] ; 

End 

 

The elemts C[i] are considered as blocs and ex-

ecuted in a parallel way using the A[i] and B[i] 

elements. 

       We specified the vector addition using 

MARTE profile then we allocated the application 

on the hardware architecture (CPU/GPU). 

 

 

Fig 8. Allocation of vector addition applica-

tion on hardware architecture 

 

When a kernel is launched on GPU architecture 

only this kernel is executed, the other kernels will 

wait until it finishes to be executed. This notion is 

represented using MARTE stereotypes (swS-

chedulable, swMutualExclusion) 

  

 

Fig 9. Kernel execution stereotypes 

 

5.1.3 State-transition diagram  

When a task is launched a preliminary test is 

executed on the CPU to affect the task to the right 

processor. If it is a repetitive one it will be con-

sidered as a kernel which is going to be executed 

many times on the GPU-(SIMD) Single Instruc-

tion Multiple Data. If it is a sequential task, it will 

be run once on the CPU.  The state transition 

events are TimedEvent and the state-trasition of 

task execution is stereotyped by 

Timedprocessing stereotype.  

 

 

Fig 10. State-transition diagram of task exe-

cution 

 

5.1.4 Timing diagram 

When the Vector addition is launched the pa-

rameters (Vector A and Vector B) will be trans-

ferred into the GPU and the function of vector 

addition will be a kernel. Then on the GPU the 
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kernel will be divided into blocs that will be exe-

cuted in a semi-parallel way. Each bloc executes 

one operation of addition, then it is affected to the 

result vector C. 

 

 

 

Fig 11. Timing diagram of vector addition on 

GPU 

 

 

5.1.5 Sequence diagram 

The process of vector additionis represented by 

a sequence UML diagram.  

 

 

Fig 12. Sequence diagram of vector addition 

 

5.2 Coupling MARTE with Event B 

The approach of UML/MARTE transformation 

into Event B consists of representing the aspects 

of an application by UML/MARTE diagrams 

then they must be transformed into Event B spec-

ification and proved by Rodin. This technique 

uses MARTE as a start point for modeling orient-

ed object models then they are proved and vali-

dated by Event B tools. Event B gives a correct 

semantic of the Graphic UML/MARTE models. 

 

Fig 13. Process of MARTE trasformation 

into Event B 

5.2.1 MARTE profiles’ Instantiation 

At the beginning we did a preliminary phase of 

MARTE‟s specification instantiation of MARTE 

Timing and scheduling profiles to Event B con-

text from MARTE definition. 
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5.2.2 Rules of MARTE specification trans-

formation into Event B 

In order to transform MARTE models into 

Event B specification we proposed a set of rules 

based on the state-transition, class diagram and 

Allocation diagram: 

Rule 1: A class X is transformed into a Ma-

chine X. 

Rule 2: The properties of class X are the varia-

bles of Machine X. 

Rule 3: Each Machine X has a ContextX that 

defines its variables. 

Rule 4: The states of state-transition diagram 

(of class X) are constants in the context Con-

textX. 

Rule 5: The events of state-transition diagram 

are the events of Machine X. 

Rule 6: The software Machines share the same 

context. 

Rule 7: The operations of a class X are the 

events of the corresponding Machine X. 

Rule 8: The hardware machine refines the 

software machines. 

 

Applying these rules on the GPU MARTE spec-

ification we conclude the following Event B 

specification illustrated by a schema (cf.Fig). 

 

 

Fig 14. Resultant machines of transformation 

 

The transformation of GPU class result a GPU 

machine using scheduling and timing profiles: 
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Gpu-
Clock 

evdura-

tion 

INVARIANTS 

inv9   

:    

Task-

Type   TASKtype 

inv2   
:    

Taskstate   St
ate 

inv10   
:    

Tstereo-

type   Timing_stereotypes 

inv11   

:    

Sstereo-

type   Scheduling_stereotypes 

inv13   

:    

GpuStandardMemo-

ry ℕ1 

inv14   

:    

CudaCoreNum-

ber ℕ1 

inv15   
:    

Gpu-

Clock ℕ1 

inv16   
:    

Gpu-

Name Gpunamesetgpu 

inv17   

:    

GpuMemo-

ryType MemoryType 

inv18   

:    

evdura-

tion ℕ1 

EVENTS 

INITIALISATION   

≙    

ex-

tended 

STAT

US 

ordi-

nary 

BEGIN 

act11   
:    

Sstereo-

type ≔ SwSchedulableResource 

act10   
:    

Tstereo-

type ≔ TimedProcessing 

ac
3 

  :   

Task-

Type≔TR 

act4   

:    
Taskstate≔ReadyTa

sk 

act12   

:    

Gpu-

Name≔GeForce210 

act13   
:    

GpuMemo-

ryType≔DDR3 

act14   

:    

CudaCoreNum-

ber≔16 

act15   

:    

Gpu-

Clock≔589 

act16   

:    

GpuStandardMemo-

ry≔1 

END 

 

TestE-

vent   ≙    

STAT

US 

or
in

ary 

ANY 

Tas

kT 

Tst

ate 

WHERE 

grd1   

:    

TaskT=

TR 

grd3   
:    

Tstate=ReadyTa
sk 

THEN 

act1   
:    

Taskstate ≔ Ker
nel 

act2   

:    

Sstereo-

type ≔ SwSchedulableResource  

act3   

:    

Tstereo-

type ≔ TimedEvent 

act4   

:    

evdura-

tion≔2 

END 

 

Execu-

tion   ≙    

STAT

US 

ordi-

nary 

ANY 

Tst

ate 

WHERE 

grd1   

:    

Tstate = Ker

nel 

THEN 

act6   
:    

Taskstate≔ExecutionE
nd 

act3   
:    

Sstereo-

type ≔ SwMutualExclusionResource   

act4   

:    

Tstereo-

type ≔ TimedEvent 

act7   

:    

evdura-

tion≔30 

END 

 

END 

 

For the application there are three machines refined 

from GPU machine which are presented in the next 

part: 
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MACHINE 

VectorABLoa-

ding 

REFINES 

G

PU 

SEES 

applicationCon-

text 

VARIABLES 

si

ze 

k 

A 

B 

INVARIANTS 

inv1   

:    

size 
ℕ1 

inv7   

:    

k

 ℕ 

inv12   

: 
  
A 1‥size

→ℕ 

inv13   

:    

ran(A)=ran(Arr

ay) 

inv14   

:    

A ℕ
↔ℕ 

inv15   

:    
B 1‥size

→ℕ 

inv16   

:    

ran(B)=ran(Arr

ay) 

inv17   

:    

B ℕ
↔ℕ 

EVENTS 

INITIALISATION   

≙    

STAT

US 

ordi-

nary 

BEGIN 

act1   

:    
size≔10

24 

act4   

:    

k

≔1 

END 

 

TableLoa-

ding   ≙    

STAT

US 

ordi-

nary 

WHEN 

grd1   

:    

k<size

+1 

THEN 

act3   
:    

A(k)

≔k 

act4   B(k)≔k

:    ∗k 

act5   
:    

k≔k
+1 

END 

 

END 

MACHINE 

KernelExecu-

tion 

REFINES 

VectorABLoa-

ding 

VARIABLES 

si

ze 

A 

B 

C 

k 

r

est 

i 

GpuCore-

Number 

af-
fec 

p

os 

INVARIANTS 

inv1   

:    

size 
ℕ1 

inv2   

:    
A 1‥size

→ℕ 

inv3   

:    

ran(A)=ran(Arr

ay) 

inv4   

:    

A ℕ
↔ℕ 

inv5   
:    

B 1‥size

→ℕ 

inv6   
:    

ran(B)=ran(Arr
ay) 

inv7   

:    
B ℕ

↔ℕ 

inv8   

:    
C 1‥size

→ℕ 

inv9   

:    

ran(C)=ran(Arr

ay) 

inv
0  C ℕ
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 :    ↔ℕ 

inv11   
:    

k

 ℕ 

inv12   
:    

GpuCoreNum-

ber ℕ1 

inv14   

:    

rest

 ℕ 

inv15   

:    

i

 ℕ 

inv16   

:    

af-

fect ℕ 

inv17   
:    

pos

 ℕ 

EVENTS 

INITIALISATION   

≙    

STAT

US 

ordi-

nary 

REFINES 

INITIALISATI

ON 

BEGIN 

act4   
:    

size≔10
24 

act1   


    

k

≔1 

act2   

:    

GpuCoreNum-

ber≔16 

act3   

:    

rest≔10

24 

act5   

:    

i

≔1 

act6   
:    

pos

≔1 

END 

 

ThreadDevi-

sion   ≙    

STAT

US 

ordi-

nary 

BEGIN 

act1   
:    

af-

fect≔rest÷GpuCoreNumber 

act2   

:    

pos

≔k 

END 

Compu-

ting   ≙    

STAT

US 

ordi-

nary 

WHEN 

grd1   
:    

af-
fect>0 

grd2   
:    

rest
>0 

grd3   

:    

i<pos+

17 

THEN 

act1   

:    
C(i)≔A(i)+B

(i) 

act3   
:    

k≔k
+1 

act4   
:    

rest≔size
−1 

act5   

:    
i≔i

+1 

END 

END 

5.3 CUDA Code generation 

To exploit the Event B specification we propose 

a refinement approach to pass from Event B spec-

ification into a pre-code CUDA. The CUDA ma-

chine will be treated in another research work to 

generate an executable CUDA code which will be 

executed on the GPU architecture.  

 

Fig 12.Trasformation process of Event B 

specification into Cuda code 

        

This approach could be useful to people who 

can‟t implement parallel programs because it is 

difficult and it requires an experience in the field 

of programming. CUDA guaranties a parallel 

implementation of programs with specialized 

tools. In the case of vector addition algorithm the 

Event b specification will turn into the following 

Cuda Machine. 

MACHINE 

CUDAMACHI

NE 

REFINES 

KernelExecu-

tion 

SEES 

CUDAcon-

text 

applicationCon-

text 
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VARIABLES 

devi-

ceA 

de-
viceB 

devi-

ceC 

A 

B 

C 

si

ze 

Transfer-
Mem 

CudaMal-

loc 

af-

fect 

GpuCore-
Number 

r

est 

i 

k 

p
os 

Cudafr

ee 

INVARIANTS 

inv1   

:    

devi-

ceA 1‥size→ℕ 

inv2   

:    

de-

viceB 1‥size→ℕ 

inv3   

:    

devi-

ceC 1‥size→ℕ 

inv8   

:    

Transfer-

Mem   TRANSFERDATATYPE 

inv10   
:    

size 
ℕ1 

inv11   

:    

ran(deviceA)=ran(Arr

ay) 

inv12   
:    

ran(deviceB)=ran(Arr
ay) 

inv13   

:    

ran(deviceC)=ran(Arr

ay) 

inv14   

:    

devi-

ceA ℕ↔ℕ 

inv15   

:    

de-

viceB ℕ↔ℕ 

inv16   
:    

devi-

ceC ℕ↔ℕ 

inv18   
:    

i

 ℕ 

inv19   

:    

k

 ℕ 

inv20   

:    

rest

 ℕ 

inv21   

:    

GpuCoreNum-

ber ℕ 

inv22   pos

:     ℕ 

inv24   
:    

Cudafree CudaFr
ee 

inv25   
:    

CudaMal-

loc Malloc 

EVENTS 

INITIALISATION   

≙    

STAT

US 

ordi-

nary 

REFINES 

INITIALISATI

ON 

BEGIN 

act3   
:    

size≔10
24 

act4   
:    

i

≔1 

act5   

:    

k

≔1 

act6   

:    
rest≔10

24 

act7   

:    

GpuCoreNum-

ber≔16 

act8   
:    

pos

≔1 

act9   
:    

CudaMal-

loc≔nonalloc 

END 

 

CudaAlloca-

tion   ≙    

STAT

US 

ordi-

nary 

BEGIN 

act1   

:    

CudaMal-

loc≔malloc 

act2   

:    
Cudafree≔nonFr

ee 

END 

 

CudaCPUtoGPUtras-

ferts   ≙    

STAT

US 

ordi-

nary 

WHEN 

grd1   

:    

CudaMal-

loc=malloc 

THEN 

act1   

:    

devi-

ceA≔A 

act2   

:    

de-

viceB≔B 
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act3   
:    

Transfer-

Mem≔HostToDevice 

END 

 

ThreadDivi-

sion   ≙    

STAT

US 

ordi-

nary 

BEGIN 

act1   

:    

af-

fect≔rest÷GpuCoreNumber 

act2   

:    

pos

≔k 

END 

 

CudaKernelLaun-

chADD   ≙    

STAT

US 

ordi-

nary 

WHEN 

grd1   

:    

af-

fect>0 

grd2   
:    

rest
>0 

grd3   

:    

i<pos+

17 

THEN 

act1   
:    

de-

viceC(i)≔deviceA(i)+deviceB(i) 

act2   
:    

k≔k
+1 

act3   

:    
i≔i

+1 

act4   

:    
rest≔size

−1 

END 

 

CudaGPUtoCPUtras-

ferts   ≙    

STAT

US 

ordi-

nary 

BEGIN 

act1   

:    
C≔devic

eC 

END 

 

CudaFree   

≙    

STAT

US 

ordi-

nary 

WHEN 

grd1   
:    

rest
≤0 

THEN 

act1   
:    

Cudaf-

ree≔Free 

END 

 

END 

 

 

After having refined our vector addition algo-

rithm into a CUDA machine,  our goal is to gen-

erate a valid CUDA code that guaranties the par-

allelism implementation on GPU architecture. 

6. CONCLUSION 

The paper suggests new approaches of specifi-

cation and implementation of GPU SOC basing 

on MARTE models. The first approach consists 

on validating the proposed MARTE specification 

with the formal tool Event B. The second ap-

proach proposes to refines the event B specifica-

tion to have a pre-Code CUDA. 

The proposed approaches need to be improved 

by new rules. As a perspective we want to im-

plement our approaches with automatic genera-

tion tools to apply our proposed rules of MARTE 

transformation into Event B specification and to 

validate task scheduling on the GPU architecture 

with formal tools such as Event B. Another per-

spective is to generate an executable code from 

the refined pre-code machine CUDA. 
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