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Abstract-System on chip multi calculator (CPU and
GPU) is a promoted filed to parallelize application
thanks to the multi-core GPU architecture. GPUs
(Graphic Processing Unit) ensure the parallelism on
the chip and discharge the Central Processing Unit
(CPU). The specification of scheduling and timing on
GPUs had been always a research problematic.
MARTE is an efficient semi formal tool for specifica-
tion thanks to the several diagrams of UML and the
new profiles provided by MARTE which treats the
software, hardware and scheduling of the specified
SoC. But it still none valid specification because it isn’t
proved. That’s why we propose to couple MARTE
with the formal method Event B to have a valid and
proved specification and to validate the task schedul-
ing on the GPU. After having a valid specification a
second phase of executable code generation from Event
B specification is essential to execute parallel applica-
tions on the GPU. CUDA is an efficient programming
language on GPUs because it offers new tools for
parallel programming.

Index Terms

GPU, MARTE, Scheduling, Timing Event B, Re-
finements, Code generation, CUDA.

1. INTRODUCTION

A System on Chip (SoC) is a total electronic
system integrated on one chip. A SoC can be
constituted of a CPU, a memory (DRAM), a bus
and a specialized unit of processing according to
the SoC’s function. In the last years the Graphic
processing Unit (GPU) started to be essential in
SoCs. GPUs permit to execute parallel tasks on
the SoC.

To specify SoCs we need specialized tools such
as UML'/ MARTE (Modeling and Analysis of
Real-Time and Embedded Systems) which offer a
support to cover all the phases of SoC develop-
ment and to specify hardware and software SoC’s
aspects. But this specification misses the mathe-
matic improves because it’s informal so it can’t
be considered valid. To solve this problem the
proposed solution is to couple the UML/MARTE

OYML: Unified Modeling Language

with a formal tool to have a sure specification
based on mathematic notions and successive re-
finements.

We are interested to coupling UML/MARTE to
the formal method B-event which is an extension
of B method. Many works have proposed ap-
proaches to translate UML diagrams to B specifi-
cation. The work made by Laleau [1] proposes a
tool of automatic generation of class and state-
transition diagram to B abstract machines Using
OCaml language in Rose Programming Environ-
ment. But he found some limits of semantics of
the concepts which cause the user intervention to
complete the generated specification. Then Le-
dang [2] proposed an approach to translate the
comportment diagrams because according to him
the previous works have interested just to static
diagrams. He has concentrated on collaboration
diagram by considering it as layers of objects. He
proposed the notion of calling-called to link be-
tween layers and generated abstract machines.
We can say that Ledang [2] has created an effec-
tive tool to translate UML comportment diagrams
to B specification. In addition, to complete his
works, Ledang [3] has created a tool named Ar-
goUML+B which permit to generate B specifica-
tions from UML diagrams. This tool has given
good results in the field of UML translation to B
specification and it has been developed using
Java to avoid limits founded in Laleau’s work[1].
Based on this works we propose an approach of
coupling UML/MARTE to B-event specification
to have proved and verified specification thanks
to B-event.

After specifying our SoC we need to generate
an executable code on GPU from the MARTE
specification using the proved Event B specifica-
tion as an intermediate. Model Driven Engineer-
ing (MDE) proposes an approach to generate
executable code from a model throw successive
transformations of the semi-formal specification.
In this field several works have been proposed by
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Wendell [4][5] to generate OpenCL* code from a
GPU MARTE specification in order to provide a
tool of code generation for none specialized in
parallel programming to develop their applica-
tions. Wendell proposed an MDE approach of
specification, modeling and generation of
OpenCL applications. A first specification has
been done using UML/MARTE and ARRAYOL
of GPU architecture and the Conjugate Gradien
algorithm, then a successive transformations us-
ing MOF/QVT (Meta-Object Facility Que-
ry/View/Transformation) result an executable
OpenCL code on GPU.[4] Another work which
studies a H.263 video compression (Downscal-
ing) application where a preliminary MARTE
specification of the downscaler has been done
using Gaspard2. Then an OpenCL valid code has
been generated from Gaspard2 specification.[5]
We are going to generate a pre-code CUDA
(Compute Unified Device Language) from
UML/MARTE specification but after transform-
ing this later into Event B specification to guaran-
tee its validity.

This paper is divided into several sections, sec-
tion 2 defines MARTE specification. The section
3 gives a brief description of Event B. In section
4 we describe GPU’s architecture. Then we pre-
sent our proposition of GPU specification in sec-
tion 5 and we treat a study case of GPU specifica-
tion using UML/MARTE, coupling MARTE with
Event B and extracting a CUDA code of vector
addition algorithm using Event B refinements.
Finally we present our conclusion and some per-
spectives.

2. MARTE

The MARTE (Modeling Analysis Real Time
Embedded systems) profile is an extension of
UML to complete the missing tools of embedded
systems modeling. MARTE was created by
“ProMarte” consortium for OMG (Object Man-
agement Group) users. [6] MARTE is composed
of four packages: foundations, design model,
analysis model and annexes. Each package con-
tains several profiles which permit specifying,
modeling, analyzing and verifying an embedded

<<prafle>>

MARTE foundations
Time

<<profile>> <<profile>> <<profile>>
GRM GCM Alloc
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'
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real time system.

Fig 1. MARTE architecture

MARTE has improved the UML specification
because:

. It distinguishes the hardware part from
the software part using Hardware Resource Mod-
eling (HRM) profile and Software Resource
Modeling (SRM) profile.

o It permits to allocate the software appli-
cation on the hardware resources thanks to Allo-
cation profile (Alloc).

. It permits timing and scheduling model-
ing.
. It permits performance and scheduling

analysis using Performance Analysis Modeling
(PAM) profile and Schedulability Analysis mod-
eling (SAM) profile.

Several works have used MARTE profile for
system modeling especially real time embedded
system thanks to its efficient tools (profiles). We
mention the work of remote controlled robot
specification [7] where they used MARTE for
real time constraints modeling. They stereotyped
the classes with SchedulableResource stereotype
in class diagram and they added timing observa-
tion (reference) in sequence diagram to illustrate
the timing constraints of remote controlled robot
system. Another paper where they dealt with
time specification in an automotive system of an
ignition control and knock correction in the case
of four stroke engine. In a 4-stroke engine a cycle
is composed of four phases: Intake, Compression,
Combustion and Exhaust. This phases where
represented by a timing diagram to illustrate the
timing properties in addition to the MARTE no-
tions of TimedEvent and TimedProcessing used in
the state-transition diagram.[8] The MoPCom
approach which is a co-design methodology to
generate VHDL codes has also used MARTE to
describe real-time properties and perform the
platform modeling. In addition to UML diagrams,
the MARTE profiles SRM, HRM and Alloc have
been essential in the process of VHDL code gen-
eration.[9] MARTE was also a base of a method-
ology approach for high level modeling and mod-
el+code generation for embedded real time sys-
tems. The methodology consist of specifying a
system with UML and MARTE profile then the
specification become a source to model and code
generation of real time components and schedul-
ing analysis. [10] MARTE became an essential
element in real time embedded systems specifica-
tion because it offers a multitude tools (profiles)
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for modeling time constraints, scheduling and
performance of systems.

3.EVENTB

Event B is an enriched extension of the formal
method B created by J. R Abrial [11] for system
specification, design and coding. It is based on
Set theory and it specifies the system by abstract
machines, operations and successive refinements
which permit to prove, to verify and to validate
the specified system.

Event B is based on MODEL notion which de-
scribes the labeled transaction of the system. A
MODEL is composed of a static part which con-
tains the states, its invariants and its properties
and a dynamic part containing transitions
(events). A MODEL has a name, variants, invari-
ants and Events. A MODEL is completed by a
formalism celled the CONTEXT. It plays an im-
portant role in MODEL parameterization and
instantiation. A CONTEXT has also a name, Sets,
Invariants.[12][13] Each MODEL can reference a
CONTEXT and many refinements which con-
cretes models and contexts as it is shown in the
figure 2.

The Event B method is efficient because it uses
tools like Atelier B*? and the platform RODIN
(Rigorous Open Development Environment for
Complex Systems). This platform is a tool to
develop and to prove Event B specification under
Eclipse environment. [12] The main objective of
RODIN is to create a methodology and support-
ing open tool platform for cost-effective, rigorous
development of complex, dependable software
systems and services. [14]

4. GPU ARCHITECTURE

Graphic Processing Units have a high perfor-
mance processors dedicated to graphics pro-
cessing. Originally, GPUs were oriented to accel-
erating graphics rendering functionality. Lately
they are used to perform different kinds of gen-
eral purpose computations in a parallel way to
minimize application’s runtime.[15]

GPU is a multi-core architecture used to en-
hance intensive computing and to discharge the
CPU. A GPU is composed of a Global memory
(DRAM) and a set of Streaming Multiprocessor
(SM). Each SM is constituted of a set of Stream-
ing Processor (SP) and each SP is linked to a
local memory (Register memory). And the SPs of

SM are linked to a shared memory. The multi-
om:;'chitecture of GPU ensures its efficiency
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Fig 2. Refinements of models and contexts

In Nvidia architecture tasks are executed using
SIMD (Singel Instruction Multiple data) blocs
written in CUDA. [17] CUDA (Compute Unified

12 Atelier B is a tool that permit operational use of the
method B : http://www:.atelierb.eu
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Device Architecture) provides a set of software
libraries, an execution environment and a multi-
tude drivers for different languages of program-
ming (C,C++,...). CUDA is an extension of C
language for programming on NVIDIA GPU.
The computations on a GPU are programmed as
kernel functions. A kernel program describes the
execution of a serial thread on a GPU. The kernel
is launched by the host CPU with specified num-
bers of blocks and threads, where a block repre-
sents a set of a certain number of threads, and all
blocks in that kernel launch have the same num-
bers of threads. The total number of threads is the
number of blocks times the number of threads per
block. [18] Since there is a number of processing
units on GPU a solution of scheduling is needed
to organize the execution on GPU.

5. PROPOSED APPROACH VIA A CASE
STUDY

Our main objective is to specify a GPU with
different tools and to generate a valid executable
code.

We propose to use UML diagrams and MARTE
profile to specify a SoC with:

i Hardware Resource Modeling (HRM) to
specify the SoC components,

ii. Software Resource Modeling (SRM) for
modeling the applications that will be executed
on the SoC.

iii. Allocation (Alloc) profile to allocate the
software on the hardware components.

iv. Timing profile for time constraints
modeling.
V. Schedulability  Analysis  Modeling

(SAM) for scheduling modeling and analysis.

After specifying our SoC with MARTE profile
we propose to couple it with Event B specifica-
tion to make it valid, sure and proved with Event
B rigorous tools. We have proposed a set of rules
for transformation of MARTE models into Event
B specification.

UL
MARTE

E@
MARTE  specifica-
|
|
1 .
I Event B specifica-
|
hd Pro-
<A NVIDIA.
CUDA.
v
Rodin plat-

Cuda

Fig 4. Proposed approach of SOC specifica-
tion

Once a valid, sure and correct specification of
SoC has been carried out, it could be exploited to
generate an executable code to be run on the SoC
hardware resources (CPU/GPU). We propose to
do a set of refinements of Event B specification
to generate a parallel executable code written in
CUDA language which is rich of parallel imple-
mentation on NVIDIA GPU architectures.

To test our approach we used a case study of
GPU architecture. We are going to specify a GPU
architecture using MARTE and Event B with an
application (Vector addition) which will be exe-
cuted on GPU architecture.

5.1. GPU specification
5.1.1 GPU architecture

We are using a GeForce GT 210 GPU to im-
plement our case study. It is composed of 16
CUDA cores. The relation between internal GPU
components is illustrated in the component dia-
gram where each component is stereotyped by
MARTE stereotypes for each type component
(hwcomponent, hwRam, hwBus, hwCompu-
tingResource,...).
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Fig 5. Component diagram of GPU architec-
ture

The properties of GPU compoenent are illus-
trated by a GPU class where all the GPU details
are presented.

GPU
£ GpuName: <Undefined: [1] = NVIDIA GeForce 210
E GpuStandardMemory: <Undefined: [1] = 1GB
£ GpuMemoryType: <Undefined: [1] = DDR3

=4
=4

CudaCoreshumber: <Undefined: [1]= 16
GpuClock: <Undefined= [1] = 589 MHZ

Fig 6. GPU class

5.1.2 Link between hardware architecture
and software architecture
In order to treat the parallel execution of appli-

cations on GPUs we have chosen a simple algo-
rithm of Arrays addition.

e

Fig 7. Vector Addition

The sequential algorithm of Vector addition of
two vectors A, B (of N dimension) resulting a
vector C is illustrated thereafter. It is necessary to
run through a loop to execute the addition opera-
tion. So the time spent in executing vector addi-
tion is doubled.

Algorithm Vector Addition

Input:
A,B: array [1..N] d’entier
Output:C
Begin
i: entier
for (i=o a N ; i++)
Clil= A[i]*B[i] 5
Endfor
End

To optimize the runtime the vector addition al-
gorithm can be executed in a parallel way on
GPU architecture thanks to its multi-cores. Each
addition operation of an element C[i] is calculat-
ed in a CUDA core basing the element A[i] and
the element B[i]. [19] In this case the execution
of vector addition follows these steps:

. Vector A loading on the CPU;
. Vector B loading on the CPU;
o Data (vector A, vector B) transfers from

CPU into GPU;

Calculating C: kernel parallel execution
on GPU which is illustrated in the next algorithm;

. Data transfers (vector C) from GPU into
CPU;
. Vector C display.
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Algorithm Kernel

Input: A,B

Output:C

Begin
int nmbr_bloc,nmbr_thread,affect;
affect=nbre_bloc/nbre_thread;
if (affect >=0) then

Execute (Vector-addition (C[1], C[z2],...,
CIN])) ;

endif
End
Vector-Addition (CJ[i])
Begin
Cli] = A[i]+BI[i] 5

End

The elemts C[i] are considered as blocs and ex-
ecuted in a parallel way using the A[i] and BIi]
elements.

We specified the vector addition using
MARTE profile then we allocated the application
on the hardware architecture (CPU/GPU).

aCamponents ccomponent, hwResaurce, ¢
Vector addition application CPU-GPU Archi
Vector A & B Loading wallocated
S I SR oW
€ B: <Undefned [1] alocate » AE Coullame: <U
/1B Cpype: n

wschedulableResource, swhutualt.. A
( computing : Kemel execution /' dhviBus»
B & <ndees> [1] sallocate » / ﬂ

E B <Undefined [1] e
B C: <Undefned[1] i S—
ST aallocated
/! al\ucalen - o
7 L ] Y |
: N

) £} Gpullame: <
Vector C display S/ &} GpuStandard
_ / & GpuMemanyT
g C: <Undsfined» 1) E CudaCoreln
L GpuClock <l

Fig 8. Allocation of vector addition applica-
tion on hardware architecture

When a kernel is launched on GPU architecture
only this kernel is executed, the other kernels will
wait until it finishes to be executed. This notion is

— task

represented using MARTE stereotypes (swS-
chedulable, swMutualExclusion)

Comment0
swSchedulableResource

swhutualExclusionresource

=] ;
Resources

Kernel Execution i

e , swSe ce, process,

Fig 9. Kernel execution stereotypes

5.1.3 State-transition diagram

When a task is launched a preliminary test is
executed on the CPU to affect the task to the right
processor. If it is a repetitive one it will be con-
sidered as a kernel which is going to be executed
many times on the GPU-(SIMD) Single Instruc-
tion Multiple Data. If it is a sequential task, it will
be run once on the CPU. The state transition
events are TimedEvent and the state-trasition of
execution is stereotyped by
Timedprocessing stereotype.

« TimedProcessingy
Task execution

Kernel

[Pardllel exezution ofthreads]

Repelie s ——— " rinadEventlims

. Readytask 0
AV st Tastope]
Iniial State

TimedEvent?2
MEEVEILEN | o ent Tas

[Task exacufion]

Task TimedEvent:Mms

End execution

Fig 10. State-transition diagram of task exe-
cution

5.1.4 Timing diagram

When the Vector addition is launched the pa-
rameters (Vector A and Vector B) will be trans-
ferred into the GPU and the function of vector
addition will be a kernel. Then on the GPU the
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kernel will be divided into blocs that will be exe-
cuted in a semi-parallel way. Each bloc executes
one operation of addition, then it is affected to the
result vector C.

S
1 |
! |

Execution on GPU

1

Execution on CPU

2 3 4

GPU clock

CPU clock f

I R A
GRU ]

Loading AB vectors Kl execufion Result display
G | |

Fig 11. Timing diagram of vector addition on
GPU

5.1.5 Sequence diagram

The process of vector additionis represented by
a sequence UML diagram.

CPU: GPU:
Loading vector A
<}
Loaging Vector B
— Vector A, Vector B transfers into GPU
=
=
create
—_— . i
Vector Addition Kernel :
Decompaosition of kernel on threads
-
»
verific:
Confirmation numb
threac
Threads Lanuch
>
1
a
I
Resulttrasfers inte CPU End of execution
destroy
—_—

Fig 12. Sequence diagram of vector addition

5.2 Coupling MARTE with Event B

The approach of UML/MARTE transformation
into Event B consists of representing the aspects
of an application by UML/MARTE diagrams
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then they must be transformed into Event B spec-
ification and proved by Rodin. This technique
uses MARTE as a start point for modeling orient-
ed object models then they are proved and vali-
dated by Event B tools. Event B gives a correct
semantic of the Graphic UML/MARTE models.
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Fig 13. Process of MARTE trasformation
into Event B

5.2.1 MARTE profiles’ Instantiation

At the beginning we did a preliminary phase of
MARTE’s specification instantiation of MARTE
Timing and scheduling profiles to Event B con-
text from MARTE definition.

CONTEXT
Timing-profile
SETS
Timing_stereotypes
CONSTANTS
TimedEvent
TimedProcessing
EventDuration
AXTOMS
axml
axm2
axm3
axmé
END

EventDuration € N1

TimedEvent e Timing_stereotypes
TimedProcessing e Timing stereotypes
Timing_stereotypes#e
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CONTEXT . . Timing-Profile
Scheduling-profile ] Context

SETS
Scheduling stersotypes S

CONSTANTS GPU Ma- mm8m» Scheduling-
SuchedulableResource S Profile
Suutual ExclusionResaurce

AXIOMS Re-

GPU Context
aml : SwSchedulableResource € Scheduling stereotypes

am? ¢ SiutualexclusionResource € Scheduling stereotypes

am3 : Scheduling stersotypes # o AB vectors Loa-

END ding Machine <
5.2.2 Rules of MARTE specification trans- Re-
formation into Event B 4 Q Apphcatth
In order to transform MARTE models into Kernel Execu- Context
Event B specification we proposed a set of rules tion Machine
based on the state-transition, class diagram and
Allocation diagram: <
Rule 1: A class X is transformed into a Ma- Re-
chine X. v
Rule 2: The properties of class X are the varia- I\/ector E_d's'
bles of Machine X. nlav Machina

Rule 3: Each Machine X has a ContextX that  Fig 14. Resultant machines of transformation
defines its variables.
Rule 4: The states of state-transition diagram

. The transformation of GPU class result a GPU
(of class X) are constants in the context Con- ' !

machine using scheduling and timing profiles:

textX.
. . MACHINE
Rule 5: The events of state-transition diagram G
are the events of Machine X. PU
Rule 6: The software Machines share the same SEES
context. GPUCon-
Rule 7: The operations of a class X are the text
events of the corresponding Machine X. pg}iﬂ:”g'
Rule 8: Th_e hardware machine refines the Scheduling-
software machines. profile
VARIABLES
Applying these rules on the GPU MARTE spec- My
e . Type
ification we conclude the following Event B
specification illustrated by a schema (cf.Fig) Taskst
p y -F19)- ate
Tstereo-
type
Sstereo-
type
Gpu-
Name
GpuStandardMe-
mory
GpuMemo-
ryType
CudaCore-
Number
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Gpu-
Clock

evdura-

tion

INVARIANTS

inv9

Task-

Type € TASKtype

inv2

Taskstate € St

ate

'invlo
'invll
'inv13
' inv14
.inv15
.inv16
.inv17
.inv18

EVENTS

Tstereo-
type € Timing_stereotypes

Sstereo-
type € Scheduling_stereotypes
GpuStandardMemo-
ryeN1
CudaCoreNum-
bereN1
Gpu-
ClockeN1
Gpu-
NameeGpunamesetgpu
GpuMemo-
ryTypeeMemoryType
evdura-
tioneN1

INITIALISATION

ex-
tended

STAT

us
ordi-

nary
BEGIN

actll

actl0

ac 3

act4

. actl2

. actl3

| actl4

. actl5

actlé

END

TestE-
vent &

Sstereo-
type := SwSchedulableResource
Tstereo-
type := TimedProcessing
Task-
Type:=TR
Taskstate:=ReadyTa
sk
Gpu-
Name:=GeForce210
GpuMemo-
ryType:=DDR3
CudaCoreNum-
ber:=16
Gpu-
Clock:=589
GpuStandardMemo-
ry:==1

STAT

us

or in

ary

ANY

Tas
kT

Tst
ate

HERE
grdl

. grd3
H E.N
actl
act2
act3
act4
D

Execu-
tion 2

us
ordi-
nary
NY

Tst
ate

WHERE

grdl
H E.N

act6

act3

act4

act7
D

ND

TaskT=
TR

Tstate=ReadyTa
sk

Taskstate := Ker
nel

Sstereo-

type := SwSchedulableResource
Tstereo-

type := TimedEvent
evdura-

tion:=2

STAT

Tstate = Ker
nel

Taskstate:=ExecutionE
nd

Sstereo-

type := SwMutualExclusionResource
Tstereo-

type := TimedEvent
evdura-

tion:=30

T

fro
par

[

or the application there are three machines refined
m GPU machine which are presented in the next
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MACHINE : *K
VectorABLoa- acts ki=k
ding : +1

REFINES END
G
PU END

SEES
applicationCon-
text

VARIABLES
si
ze

INVARIANTS
invl sizee MACHINE
: N1
. KernelExecu-
inv7 k tion
: eN
. . REFINES
inv12 A€l -size
. N d_VectorABLoa-

in
invi3  ran(A)=ran(Arr 9

. ay) VARIABLES
invi4  AeN si
. N ze
inv15 Bel- -size
: —N
invi6  ran(B)=ran(Arr
: ay)
invl7 BeEN r
: ©N est

EVENTS
INITIALISATION GpuCore-

E Number

STAT af-
us fec
ordi- p
nary 0s

BEGIN INVARIANTS
actl  size:=10 invl sizee
: 24 N1
o actd k inv2 A€l -size
. =1 . —N

END inv3  ran(A)=ran(Arr

: ay)
TableLoa- invd  AeN
ding & : «N
STAT invs  BEl--size
us SN
ordi- invé  ran(B)=ran(Arr
nary ay)

WHEN inv7 BeN
grdl  k<size : <N
: +1 inv8  Cel- -size

THEN —N
act3  A(k) inv9 ran(C)=ran(Arr
: =k ay)
act4 B(k):=k inv 0 CeN
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: -N grd2 rest
invil  k : >0
: eN grd3 i<pos+
invi2  GpuCoreNum- : 17
: bereN1 THEN
invi4d  rest actl  C(i):=A(i)+B
: eN : 0]
invl5 i act3  ki=k
. eN . +1
invlie  af- act4d  rest:=size
fecteN : -1
invl7  pos acts Q=i
: eN : +1
EVENTS END
INITIALISATION END
STAT
us 5.3 CUDA Code generation
. ordi- Td exploit the Event B specification we propose
arys a refinement approach to pass from Event B spec-
REFINE ification into a pre-code CUDA. The CUDA ma-
O,'\IN'T'AL'SAT' ching will be treated in another research work to
BEGIN gengrate an executable CUDA code which will be
) exeduted on the GPU architecture.
act4 size:=10
: 24
actl  k ggB
=1
act2  GpuCoreNum- == _
. ber:16 Proved machines
act3 rest:=10 b
: 24
acts i CUDA machines
=1
Event B specification
act6 pos
: =1
END Fig 12.Trasformation process of Event B
spegification into Cuda code
ThreadDevi-
sion & .
STAT This approach could be useful to people who
us can’t implement parallel programs because it is
ordi- difficult and it requires an experience in the field
nary of programming. CUDA guaranties a parallel
BEGIN implementation of programs with specialized
actl  af- tools. In the case of vector addition algorithm the
fect:=rest+GpuCoreNumber Event b specification will turn into the following
act2  pos Cuda Machine.
: =k MACHINE
END CUDAMACHI
Compu- NE
ting & REFINES
STAT KernelExecu-
us tion
ordi- SEES
nary CUDAcon-
WHEN fext
grdl  af- applicationCon-
fect>0 kext
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VARIABLES
devi-
ceA
de-
viceB

devi-
ceC

si
ze
Transfer-
Mem
CudaMal-
loc
af-
fect
GpuCore-
Number

r
est

p
0s

Cudafr
ee
INVARIANTS
invl devi-
CeA€l- -size—N
inv2 de-
viceBEl- - size—N
inv3  devi-
ceCel- -size—N
inv8  Transfer-
Mem € TRANSFERDATATYPE
invl0  sizee
N1
invll ran(deviceA)=ran(Arr
ay)
invl2  ran(deviceB)=ran(Arr
' ay)
invl3  ran(deviceC)=ran(Arr
ay)
invi4  devi-
: ceAEN—N
invl5 de-
: viceBEN—N
inv16 devi-
ceCEN-N
inv18 i
: eN
inv19 k
: EN
inv20 rest
: EN
inv21 GpuCoreNum-
: bereN
inv22 pos

eN

inv24 CudafreeeCudaFr
: ee

inv25 CudaMal-
loceMalloc

EVENTS
INITIALISATION

STAT
us

ordi-
nary

REFINES

INITIALISATI
ON

BEGIN

act3 size:=10
: 24

act4 i

acts k
. =1

acté rest:=10
: 24

act7 GpuCoreNum-
: ber:=16

act8 pos
: =1

act9 CudaMal-
: loc:=nonalloc

END

CudaAlloca-
tion 2
STAT
us

ordi-
nary

BEGIN

actl CudaMal-
loc:=malloc
act2 Cudafree:=nonFr
: ee

END

CudaCPUtoGPUtras-
ferts 2

STAT
us

ordi-
nary

WHEN

grdl  CudaMal-
loc=malloc

THEN

actl devi-
ceA:=A

act2 de-
viceB:=B
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act3 Transfer-
Mem:=HostToDevice

END
ThreadDivi-
sion &
STAT
us
ordi-
nary
BEGIN
actl  af-
fect:=rest+GpuCoreNumber
act2 pos
: =k
END

CudaKernelLaun-
chADD 2

STAT
us

ordi-
nary
WHEN

grdl  af-
: fect>0

grd2 rest
: >0

grd3 i<pos+
: 17

THEN
actl de-

viceC(i):=deviceA(i)+deviceB(i)

act2 k:=k
: +1
act3 i==i
: +1
act4 rest:=size
: -1
END

CudaGPUtoCPUtras-
ferts 2

STAT
us
ordi-
nary
BEGIN
actl C:=devic
: eC
END

CudaFree

STAT
us
ordi-
nary
WHEN

grdl rest
: <0
THEN
actl Cudaf-
ree:=Free
END

END

After having refined our vector addition algo-
rithm into a CUDA machine, our goal is to gen-
erate a valid CUDA code that guaranties the par-
allelism implementation on GPU architecture.

6. CONCLUSION

The paper suggests new approaches of specifi-
cation and implementation of GPU SOC basing
on MARTE models. The first approach consists
on validating the proposed MARTE specification
with the formal tool Event B. The second ap-
proach proposes to refines the event B specifica-
tion to have a pre-Code CUDA.

The proposed approaches need to be improved
by new rules. As a perspective we want to im-
plement our approaches with automatic genera-
tion tools to apply our proposed rules of MARTE
transformation into Event B specification and to
validate task scheduling on the GPU architecture
with formal tools such as Event B. Another per-
spective is to generate an executable code from
the refined pre-code machine CUDA.
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