
Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

30

Validating Timing And Scheduling Mar-

te‟s Profils Using Event B: Case Study Of

A Gpu Architecture

Imane ZOUANEB, Mostefa BELARBI, Chouarfia Abdellah

LIM Research Laboratory, University of Ibn khaldoun Tiaret,Algeria

i_zouaneb@yahoo.fr, belarbimostefa@yahoo.fr

Abstract-System on chip multi calculator (CPU and

GPU) is a promoted filed to parallelize application

thanks to the multi-core GPU architecture. GPUs

(Graphic Processing Unit) ensure the parallelism on

the chip and discharge the Central Processing Unit

(CPU). The specification of scheduling and timing on

GPUs had been always a research problematic.

MARTE is an efficient semi formal tool for specifica-

tion thanks to the several diagrams of UML and the

new profiles provided by MARTE which treats the

software, hardware and scheduling of the specified

SoC. But it still none valid specification because it isn’t

proved. That’s why we propose to couple MARTE

with the formal method Event B to have a valid and

proved specification and to validate the task schedul-

ing on the GPU. After having a valid specification a

second phase of executable code generation from Event

B specification is essential to execute parallel applica-

tions on the GPU. CUDA is an efficient programming

language on GPUs because it offers new tools for

parallel programming.

Index Terms

 GPU, MARTE, Scheduling, Timing Event B, Re-

finements, Code generation, CUDA.

1. INTRODUCTION

A System on Chip (SoC) is a total electronic

system integrated on one chip. A SoC can be

constituted of a CPU, a memory (DRAM), a bus

and a specialized unit of processing according to

the SoC‟s function. In the last years the Graphic

processing Unit (GPU) started to be essential in

SoCs. GPUs permit to execute parallel tasks on

the SoC.

To specify SoCs we need specialized tools such

as UML
10

/ MARTE (Modeling and Analysis of

Real-Time and Embedded Systems) which offer a

support to cover all the phases of SoC develop-

ment and to specify hardware and software SoC‟s

aspects. But this specification misses the mathe-

matic improves because it‟s informal so it can‟t

be considered valid. To solve this problem the

proposed solution is to couple the UML/MARTE

10UML: Unified Modeling Language

with a formal tool to have a sure specification

based on mathematic notions and successive re-

finements.

We are interested to coupling UML/MARTE to

the formal method B-event which is an extension

of B method. Many works have proposed ap-

proaches to translate UML diagrams to B specifi-

cation. The work made by Laleau [1] proposes a

tool of automatic generation of class and state-

transition diagram to B abstract machines Using

OCaml language in Rose Programming Environ-

ment. But he found some limits of semantics of

the concepts which cause the user intervention to

complete the generated specification. Then Le-

dang [2] proposed an approach to translate the

comportment diagrams because according to him

the previous works have interested just to static

diagrams. He has concentrated on collaboration

diagram by considering it as layers of objects. He

proposed the notion of calling-called to link be-

tween layers and generated abstract machines.

We can say that Ledang [2] has created an effec-

tive tool to translate UML comportment diagrams

to B specification. In addition, to complete his

works, Ledang [3] has created a tool named Ar-

goUML+B which permit to generate B specifica-

tions from UML diagrams. This tool has given

good results in the field of UML translation to B

specification and it has been developed using

Java to avoid limits founded in Laleau‟s work[1].

Based on this works we propose an approach of

coupling UML/MARTE to B-event specification

to have proved and verified specification thanks

to B-event.

After specifying our SoC we need to generate

an executable code on GPU from the MARTE

specification using the proved Event B specifica-

tion as an intermediate. Model Driven Engineer-

ing (MDE) proposes an approach to generate

executable code from a model throw successive

transformations of the semi-formal specification.

In this field several works have been proposed by

mailto:elarbimostefa@yahoo.fr

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

31

Wendell [4][5] to generate OpenCL
11

 code from a

GPU MARTE specification in order to provide a

tool of code generation for none specialized in

parallel programming to develop their applica-

tions. Wendell proposed an MDE approach of

specification, modeling and generation of

OpenCL applications. A first specification has

been done using UML/MARTE and ARRAYOL

of GPU architecture and the Conjugate Gradien

algorithm, then a successive transformations us-

ing MOF/QVT (Meta-Object Facility Que-

ry/View/Transformation) result an executable

OpenCL code on GPU.[4] Another work which

studies a H.263 video compression (Downscal-

ing) application where a preliminary MARTE

specification of the downscaler has been done

using Gaspard2. Then an OpenCL valid code has

been generated from Gaspard2 specification.[5]

We are going to generate a pre-code CUDA

(Compute Unified Device Language) from

UML/MARTE specification but after transform-

ing this later into Event B specification to guaran-

tee its validity.

This paper is divided into several sections, sec-

tion 2 defines MARTE specification. The section

3 gives a brief description of Event B. In section

4 we describe GPU‟s architecture. Then we pre-

sent our proposition of GPU specification in sec-

tion 5 and we treat a study case of GPU specifica-

tion using UML/MARTE, coupling MARTE with

Event B and extracting a CUDA code of vector

addition algorithm using Event B refinements.

Finally we present our conclusion and some per-

spectives.

2. MARTE

The MARTE (Modeling Analysis Real Time

Embedded systems) profile is an extension of

UML to complete the missing tools of embedded

systems modeling. MARTE was created by

“ProMarte” consortium for OMG (Object Man-

agement Group) users. [6] MARTE is composed

of four packages: foundations, design model,

analysis model and annexes. Each package con-

tains several profiles which permit specifying,

modeling, analyzing and verifying an embedded

11 OpenCL: Open Computing Language

real time system.

Fig 1. MARTE architecture

MARTE has improved the UML specification

because:

 It distinguishes the hardware part from

the software part using Hardware Resource Mod-

eling (HRM) profile and Software Resource

Modeling (SRM) profile.

 It permits to allocate the software appli-

cation on the hardware resources thanks to Allo-

cation profile (Alloc).

 It permits timing and scheduling model-

ing.

 It permits performance and scheduling

analysis using Performance Analysis Modeling

(PAM) profile and Schedulability Analysis mod-

eling (SAM) profile.

Several works have used MARTE profile for

system modeling especially real time embedded

system thanks to its efficient tools (profiles). We

mention the work of remote controlled robot

specification [7] where they used MARTE for

real time constraints modeling. They stereotyped

the classes with SchedulableResource stereotype

in class diagram and they added timing observa-

tion (reference) in sequence diagram to illustrate

the timing constraints of remote controlled robot

system. Another paper where they dealt with

time specification in an automotive system of an

ignition control and knock correction in the case

of four stroke engine. In a 4-stroke engine a cycle

is composed of four phases: Intake, Compression,

Combustion and Exhaust. This phases where

represented by a timing diagram to illustrate the

timing properties in addition to the MARTE no-

tions of TimedEvent and TimedProcessing used in

the state-transition diagram.[8] The MoPCom

approach which is a co-design methodology to

generate VHDL codes has also used MARTE to

describe real-time properties and perform the

platform modeling. In addition to UML diagrams,

the MARTE profiles SRM, HRM and Alloc have

been essential in the process of VHDL code gen-

eration.[9] MARTE was also a base of a method-

ology approach for high level modeling and mod-

el+code generation for embedded real time sys-

tems. The methodology consist of specifying a

system with UML and MARTE profile then the

specification become a source to model and code

generation of real time components and schedul-

ing analysis. [10] MARTE became an essential

element in real time embedded systems specifica-

tion because it offers a multitude tools (profiles)

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

32

for modeling time constraints, scheduling and

performance of systems.

3. EVENT B

Event B is an enriched extension of the formal

method B created by J. R Abrial [11] for system

specification, design and coding. It is based on

Set theory and it specifies the system by abstract

machines, operations and successive refinements

which permit to prove, to verify and to validate

the specified system.

Event B is based on MODEL notion which de-

scribes the labeled transaction of the system. A

MODEL is composed of a static part which con-

tains the states, its invariants and its properties

and a dynamic part containing transitions

(events). A MODEL has a name, variants, invari-

ants and Events. A MODEL is completed by a

formalism celled the CONTEXT. It plays an im-

portant role in MODEL parameterization and

instantiation. A CONTEXT has also a name, Sets,

Invariants.[12][13] Each MODEL can reference a

CONTEXT and many refinements which con-

cretes models and contexts as it is shown in the

figure 2.

Fig 2. Refinements of models and contexts

The Event B method is efficient because it uses

tools like Atelier B
12

 and the platform RODIN

(Rigorous Open Development Environment for

Complex Systems). This platform is a tool to

develop and to prove Event B specification under

Eclipse environment. [12] The main objective of

RODIN is to create a methodology and support-

ing open tool platform for cost-effective, rigorous

development of complex, dependable software

systems and services. [14]

4. GPU ARCHITECTURE

Graphic Processing Units have a high perfor-

mance processors dedicated to graphics pro-

cessing. Originally, GPUs were oriented to accel-

erating graphics rendering functionality. Lately

they are used to perform different kinds of gen-

eral purpose computations in a parallel way to

minimize application‟s runtime.[15]

 GPU is a multi-core architecture used to en-

hance intensive computing and to discharge the

CPU. A GPU is composed of a Global memory

(DRAM) and a set of Streaming Multiprocessor

(SM). Each SM is constituted of a set of Stream-

ing Processor (SP) and each SP is linked to a

local memory (Register memory). And the SPs of

a SM are linked to a shared memory. The multi-

core architecture of GPU ensures its efficiency

and its capacity of computing. [16]

Fig 3. GeForce GT GPU architecture

In Nvidia architecture tasks are executed using

SIMD (Singel Instruction Multiple data) blocs

written in CUDA. [17] CUDA (Compute Unified

12 Atelier B is a tool that permit operational use of the

method B : http://www.atelierb.eu

Variables

se

es

Invariants

Events

Properties

Constants

Sets

Variables

Invariants

Events

Sets

Constants

Properties

se

es

Refines Refines

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

33

Device Architecture) provides a set of software

libraries, an execution environment and a multi-

tude drivers for different languages of program-

ming (C,C++,…). CUDA is an extension of C

language for programming on NVIDIA GPU.

The computations on a GPU are programmed as

kernel functions. A kernel program describes the

execution of a serial thread on a GPU. The kernel

is launched by the host CPU with specified num-

bers of blocks and threads, where a block repre-

sents a set of a certain number of threads, and all

blocks in that kernel launch have the same num-

bers of threads. The total number of threads is the

number of blocks times the number of threads per

block. [18] Since there is a number of processing

units on GPU a solution of scheduling is needed

to organize the execution on GPU.

5. PROPOSED APPROACH VIA A CASE

STUDY

Our main objective is to specify a GPU with

different tools and to generate a valid executable

code.

We propose to use UML diagrams and MARTE

profile to specify a SoC with:

i. Hardware Resource Modeling (HRM) to

specify the SoC components,

ii. Software Resource Modeling (SRM) for

modeling the applications that will be executed

on the SoC.

iii. Allocation (Alloc) profile to allocate the

software on the hardware components.

iv. Timing profile for time constraints

modeling.

v. Schedulability Analysis Modeling
(SAM) for scheduling modeling and analysis.

After specifying our SoC with MARTE profile

we propose to couple it with Event B specifica-

tion to make it valid, sure and proved with Event

B rigorous tools. We have proposed a set of rules

for transformation of MARTE models into Event

B specification.

Fig 4. Proposed approach of SOC specifica-

tion

Once a valid, sure and correct specification of

SoC has been carried out, it could be exploited to

generate an executable code to be run on the SoC

hardware resources (CPU/GPU). We propose to

do a set of refinements of Event B specification

to generate a parallel executable code written in

CUDA language which is rich of parallel imple-

mentation on NVIDIA GPU architectures.

To test our approach we used a case study of

GPU architecture. We are going to specify a GPU

architecture using MARTE and Event B with an

application (Vector addition) which will be exe-

cuted on GPU architecture.

5.1. GPU specification

5.1.1 GPU architecture

We are using a GeForce GT 210 GPU to im-

plement our case study. It is composed of 16

CUDA cores. The relation between internal GPU

components is illustrated in the component dia-

gram where each component is stereotyped by

MARTE stereotypes for each type component

(hwcomponent, hwRam, hwBus, hwCompu-

tingResource,…).

Event B specifica-

tion

Cuda

Code

Pro-

ved

Rodin plat-

form

MARTE specifica-

tion

1

2

3

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

34

Fig 5. Component diagram of GPU architec-

ture

The properties of GPU compoenent are illus-

trated by a GPU class where all the GPU details

are presented.

Fig 6. GPU class

5.1.2 Link between hardware architecture

and software architecture

In order to treat the parallel execution of appli-

cations on GPUs we have chosen a simple algo-

rithm of Arrays addition.

Fig 7. Vector Addition

The sequential algorithm of Vector addition of

two vectors A, B (of N dimension) resulting a

vector C is illustrated thereafter. It is necessary to

run through a loop to execute the addition opera-

tion. So the time spent in executing vector addi-

tion is doubled.

Algorithm Vector Addition

Input:

A,B: array [1..N] d’entier

Output:C

Begin

 i: entier

 for (i=0 à N ; i++)

 C[i]= A[i]*B[i] ;

 Endfor

End

To optimize the runtime the vector addition al-

gorithm can be executed in a parallel way on

GPU architecture thanks to its multi-cores. Each

addition operation of an element C[i] is calculat-

ed in a CUDA core basing the element A[i] and

the element B[i]. [19] In this case the execution

of vector addition follows these steps:

 Vector A loading on the CPU;

 Vector B loading on the CPU;

 Data (vector A, vector B) transfers from

CPU into GPU;

 Calculating C: kernel parallel execution

on GPU which is illustrated in the next algorithm;

 Data transfers (vector C) from GPU into

CPU;

 Vector C display.

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

35

Algorithm Kernel

Input: A,B

Output:C

Begin

 int nmbr_bloc,nmbr_thread,affect;

 affect=nbre_bloc/nbre_thread;

 if (affect >=0) then

 Execute (Vector-addition (C[1], C[2],…,
C[N])) ;

 endif

End

Vector-Addition (C[i])

 Begin

 C[i] = A[i]+B[i] ;

End

The elemts C[i] are considered as blocs and ex-

ecuted in a parallel way using the A[i] and B[i]

elements.

 We specified the vector addition using

MARTE profile then we allocated the application

on the hardware architecture (CPU/GPU).

Fig 8. Allocation of vector addition applica-

tion on hardware architecture

When a kernel is launched on GPU architecture

only this kernel is executed, the other kernels will

wait until it finishes to be executed. This notion is

represented using MARTE stereotypes (swS-

chedulable, swMutualExclusion)

Fig 9. Kernel execution stereotypes

5.1.3 State-transition diagram

When a task is launched a preliminary test is

executed on the CPU to affect the task to the right

processor. If it is a repetitive one it will be con-

sidered as a kernel which is going to be executed

many times on the GPU-(SIMD) Single Instruc-

tion Multiple Data. If it is a sequential task, it will

be run once on the CPU. The state transition

events are TimedEvent and the state-trasition of

task execution is stereotyped by

Timedprocessing stereotype.

Fig 10. State-transition diagram of task exe-

cution

5.1.4 Timing diagram

When the Vector addition is launched the pa-

rameters (Vector A and Vector B) will be trans-

ferred into the GPU and the function of vector

addition will be a kernel. Then on the GPU the

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

36

kernel will be divided into blocs that will be exe-

cuted in a semi-parallel way. Each bloc executes

one operation of addition, then it is affected to the

result vector C.

Fig 11. Timing diagram of vector addition on

GPU

5.1.5 Sequence diagram

The process of vector additionis represented by

a sequence UML diagram.

Fig 12. Sequence diagram of vector addition

5.2 Coupling MARTE with Event B

The approach of UML/MARTE transformation

into Event B consists of representing the aspects

of an application by UML/MARTE diagrams

then they must be transformed into Event B spec-

ification and proved by Rodin. This technique

uses MARTE as a start point for modeling orient-

ed object models then they are proved and vali-

dated by Event B tools. Event B gives a correct

semantic of the Graphic UML/MARTE models.

Fig 13. Process of MARTE trasformation

into Event B

5.2.1 MARTE profiles’ Instantiation

At the beginning we did a preliminary phase of

MARTE‟s specification instantiation of MARTE

Timing and scheduling profiles to Event B con-

text from MARTE definition.

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

37

5.2.2 Rules of MARTE specification trans-

formation into Event B

In order to transform MARTE models into

Event B specification we proposed a set of rules

based on the state-transition, class diagram and

Allocation diagram:

Rule 1: A class X is transformed into a Ma-

chine X.

Rule 2: The properties of class X are the varia-

bles of Machine X.

Rule 3: Each Machine X has a ContextX that

defines its variables.

Rule 4: The states of state-transition diagram

(of class X) are constants in the context Con-

textX.

Rule 5: The events of state-transition diagram

are the events of Machine X.

Rule 6: The software Machines share the same

context.

Rule 7: The operations of a class X are the

events of the corresponding Machine X.

Rule 8: The hardware machine refines the

software machines.

Applying these rules on the GPU MARTE spec-

ification we conclude the following Event B

specification illustrated by a schema (cf.Fig).

Fig 14. Resultant machines of transformation

The transformation of GPU class result a GPU

machine using scheduling and timing profiles:

MACHINE

G

PU

SEES

GPUCon-

text

Timing-

profile

Scheduling-

profile

VARIABLES

Task-

Type

Taskst

ate

Tstereo-
type

Sstereo-

type

Gpu-

Name

GpuStandardMe-

mory

GpuMemo-
ryType

CudaCore-

Number

GPU Ma-

AB vectors Loa-

ding Machine

Vector C dis-

play Machine

Kernel Execu-

tion Machine

Timing-Profile

Context

Scheduling-

Profile

GPU Context

Application

Context

S

S

S

S

S

S

Re-

Re-

Re-

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

38

Gpu-
Clock

evdura-

tion

INVARIANTS

inv9

:

Task-

Type TASKtype

inv2
:

Taskstate St
ate

inv10
:

Tstereo-

type Timing_stereotypes

inv11

:

Sstereo-

type Scheduling_stereotypes

inv13

:

GpuStandardMemo-

ry ℕ1

inv14

:

CudaCoreNum-

ber ℕ1

inv15
:

Gpu-

Clock ℕ1

inv16
:

Gpu-

Name Gpunamesetgpu

inv17

:

GpuMemo-

ryType MemoryType

inv18

:

evdura-

tion ℕ1

EVENTS

INITIALISATION

≙

ex-

tended

STAT

US

ordi-

nary

BEGIN

act11
:

Sstereo-

type ≔ SwSchedulableResource

act10
:

Tstereo-

type ≔ TimedProcessing

ac
3

 :

Task-

Type≔TR

act4

:
Taskstate≔ReadyTa

sk

act12

:

Gpu-

Name≔GeForce210

act13
:

GpuMemo-

ryType≔DDR3

act14

:

CudaCoreNum-

ber≔16

act15

:

Gpu-

Clock≔589

act16

:

GpuStandardMemo-

ry≔1

END

TestE-

vent ≙

STAT

US

or
in

ary

ANY

Tas

kT

Tst

ate

WHERE

grd1

:

TaskT=

TR

grd3
:

Tstate=ReadyTa
sk

THEN

act1
:

Taskstate ≔ Ker
nel

act2

:

Sstereo-

type ≔ SwSchedulableResource

act3

:

Tstereo-

type ≔ TimedEvent

act4

:

evdura-

tion≔2

END

Execu-

tion ≙

STAT

US

ordi-

nary

ANY

Tst

ate

WHERE

grd1

:

Tstate = Ker

nel

THEN

act6
:

Taskstate≔ExecutionE
nd

act3
:

Sstereo-

type ≔ SwMutualExclusionResource

act4

:

Tstereo-

type ≔ TimedEvent

act7

:

evdura-

tion≔30

END

END

For the application there are three machines refined

from GPU machine which are presented in the next

part:

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

39

MACHINE

VectorABLoa-

ding

REFINES

G

PU

SEES

applicationCon-

text

VARIABLES

si

ze

k

A

B

INVARIANTS

inv1

:

size
ℕ1

inv7

:

k

 ℕ

inv12

:

A 1‥size

→ℕ

inv13

:

ran(A)=ran(Arr

ay)

inv14

:

A ℕ
↔ℕ

inv15

:
B 1‥size

→ℕ

inv16

:

ran(B)=ran(Arr

ay)

inv17

:

B ℕ
↔ℕ

EVENTS

INITIALISATION

≙

STAT

US

ordi-

nary

BEGIN

act1

:
size≔10

24

act4

:

k

≔1

END

TableLoa-

ding ≙

STAT

US

ordi-

nary

WHEN

grd1

:

k<size

+1

THEN

act3
:

A(k)

≔k

act4 B(k)≔k

: ∗k

act5
:

k≔k
+1

END

END

MACHINE

KernelExecu-

tion

REFINES

VectorABLoa-

ding

VARIABLES

si

ze

A

B

C

k

r

est

i

GpuCore-

Number

af-
fec

p

os

INVARIANTS

inv1

:

size
ℕ1

inv2

:
A 1‥size

→ℕ

inv3

:

ran(A)=ran(Arr

ay)

inv4

:

A ℕ
↔ℕ

inv5
:

B 1‥size

→ℕ

inv6
:

ran(B)=ran(Arr
ay)

inv7

:
B ℕ

↔ℕ

inv8

:
C 1‥size

→ℕ

inv9

:

ran(C)=ran(Arr

ay)

inv
0 C ℕ

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

40

 : ↔ℕ

inv11
:

k

 ℕ

inv12
:

GpuCoreNum-

ber ℕ1

inv14

:

rest

 ℕ

inv15

:

i

 ℕ

inv16

:

af-

fect ℕ

inv17
:

pos

 ℕ

EVENTS

INITIALISATION

≙

STAT

US

ordi-

nary

REFINES

INITIALISATI

ON

BEGIN

act4
:

size≔10
24

act1

k

≔1

act2

:

GpuCoreNum-

ber≔16

act3

:

rest≔10

24

act5

:

i

≔1

act6
:

pos

≔1

END

ThreadDevi-

sion ≙

STAT

US

ordi-

nary

BEGIN

act1
:

af-

fect≔rest÷GpuCoreNumber

act2

:

pos

≔k

END

Compu-

ting ≙

STAT

US

ordi-

nary

WHEN

grd1
:

af-
fect>0

grd2
:

rest
>0

grd3

:

i<pos+

17

THEN

act1

:
C(i)≔A(i)+B

(i)

act3
:

k≔k
+1

act4
:

rest≔size
−1

act5

:
i≔i

+1

END

END

5.3 CUDA Code generation

To exploit the Event B specification we propose

a refinement approach to pass from Event B spec-

ification into a pre-code CUDA. The CUDA ma-

chine will be treated in another research work to

generate an executable CUDA code which will be

executed on the GPU architecture.

Fig 12.Trasformation process of Event B

specification into Cuda code

This approach could be useful to people who

can‟t implement parallel programs because it is

difficult and it requires an experience in the field

of programming. CUDA guaranties a parallel

implementation of programs with specialized

tools. In the case of vector addition algorithm the

Event b specification will turn into the following

Cuda Machine.

MACHINE

CUDAMACHI

NE

REFINES

KernelExecu-

tion

SEES

CUDAcon-

text

applicationCon-

text

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

41

VARIABLES

devi-

ceA

de-
viceB

devi-

ceC

A

B

C

si

ze

Transfer-
Mem

CudaMal-

loc

af-

fect

GpuCore-
Number

r

est

i

k

p
os

Cudafr

ee

INVARIANTS

inv1

:

devi-

ceA 1‥size→ℕ

inv2

:

de-

viceB 1‥size→ℕ

inv3

:

devi-

ceC 1‥size→ℕ

inv8

:

Transfer-

Mem TRANSFERDATATYPE

inv10
:

size
ℕ1

inv11

:

ran(deviceA)=ran(Arr

ay)

inv12
:

ran(deviceB)=ran(Arr
ay)

inv13

:

ran(deviceC)=ran(Arr

ay)

inv14

:

devi-

ceA ℕ↔ℕ

inv15

:

de-

viceB ℕ↔ℕ

inv16
:

devi-

ceC ℕ↔ℕ

inv18
:

i

 ℕ

inv19

:

k

 ℕ

inv20

:

rest

 ℕ

inv21

:

GpuCoreNum-

ber ℕ

inv22 pos

: ℕ

inv24
:

Cudafree CudaFr
ee

inv25
:

CudaMal-

loc Malloc

EVENTS

INITIALISATION

≙

STAT

US

ordi-

nary

REFINES

INITIALISATI

ON

BEGIN

act3
:

size≔10
24

act4
:

i

≔1

act5

:

k

≔1

act6

:
rest≔10

24

act7

:

GpuCoreNum-

ber≔16

act8
:

pos

≔1

act9
:

CudaMal-

loc≔nonalloc

END

CudaAlloca-

tion ≙

STAT

US

ordi-

nary

BEGIN

act1

:

CudaMal-

loc≔malloc

act2

:
Cudafree≔nonFr

ee

END

CudaCPUtoGPUtras-

ferts ≙

STAT

US

ordi-

nary

WHEN

grd1

:

CudaMal-

loc=malloc

THEN

act1

:

devi-

ceA≔A

act2

:

de-

viceB≔B

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

42

act3
:

Transfer-

Mem≔HostToDevice

END

ThreadDivi-

sion ≙

STAT

US

ordi-

nary

BEGIN

act1

:

af-

fect≔rest÷GpuCoreNumber

act2

:

pos

≔k

END

CudaKernelLaun-

chADD ≙

STAT

US

ordi-

nary

WHEN

grd1

:

af-

fect>0

grd2
:

rest
>0

grd3

:

i<pos+

17

THEN

act1
:

de-

viceC(i)≔deviceA(i)+deviceB(i)

act2
:

k≔k
+1

act3

:
i≔i

+1

act4

:
rest≔size

−1

END

CudaGPUtoCPUtras-

ferts ≙

STAT

US

ordi-

nary

BEGIN

act1

:
C≔devic

eC

END

CudaFree

≙

STAT

US

ordi-

nary

WHEN

grd1
:

rest
≤0

THEN

act1
:

Cudaf-

ree≔Free

END

END

After having refined our vector addition algo-

rithm into a CUDA machine, our goal is to gen-

erate a valid CUDA code that guaranties the par-

allelism implementation on GPU architecture.

6. CONCLUSION

The paper suggests new approaches of specifi-

cation and implementation of GPU SOC basing

on MARTE models. The first approach consists

on validating the proposed MARTE specification

with the formal tool Event B. The second ap-

proach proposes to refines the event B specifica-

tion to have a pre-Code CUDA.

The proposed approaches need to be improved

by new rules. As a perspective we want to im-

plement our approaches with automatic genera-

tion tools to apply our proposed rules of MARTE

transformation into Event B specification and to

validate task scheduling on the GPU architecture

with formal tools such as Event B. Another per-

spective is to generate an executable code from

the refined pre-code machine CUDA.

7. REFERENCES

[1] R. Laleau and A. Mammar, “An Overview of a Method

and its support Tool for Generating B Specifications from

UML NotationsC, In The 15st IEEE Int. Conf. on Automated
Software Engineering, Grenoble (France), September 11-15,

2000.

[2] H. Ledang and J. Souquières, “Formalizing UML Behav-
ioral Diagrams with B”, In the Tenth OOPSLA Workshop on

Behavioral Semantics: Back to Basics, Tampa Bay, Florida

(USA), October 15, 2001.

[3]H. Ledang, J. Souquières & S. Charles, “ArgoUML+B : un

outil de transformation systématique de spécifications UML

en B”, LORIA - Université Nancy 2, 2003.

[4] Antonio Wendell de O. Rodrigues & all. “A Modeling

Approach based on UML/MARTE for GPU Architecture ”, In

the The Computing Research Repository (CoRR), May 2011.

[5] Antonio Wendell de O. Rodrigues, Frédéric Guyomarc‟h

and Jean-Luc Dekeyser, “Programming Massively Parallel

Architectures using MARTE: a Case Study”, In the Second
Workshop on Model Based Engineering for Embedded Sys-

tems Design (M-BED 2011), 2011.

[6] Madeleine Faugère, Thimothée Bourbeau, Robert De
Simone and Sébastien Gérard, “MARTE: Also an UML

Profile for Modeling AADL Applications”, In the 12th IEEE

International Conference on Engineering Complex Computer
Systems (ICECCS 2007), 2007.

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 02 (2013-2014)

43

[7] Naoufel MACHTA M. Taha BENNANI Samir BEN
AHMED, “MODELISATION ORIENTEE ASPECTS DES

SYSTEMES TEMPS REEL”, In the 8th International Confer-

ence of Modelisation and Simulation (MOSIM 10), Ham-
mamet (Tunisie), 2010.

[8] C. Andre, F. Mallet, M-A. Peraldi-Frati, “A multiform

time approach to real-time system modeling Application to an
automotive system ”, Int. Symp. on Industrial Embedded

Systems, Lisoba, Portugal, pp 234-241, Jul 2007.

[9] Jorgiano Vidal, Florent de Lamotte, Guy Gogniat,
Philippe Soulard, Jean-Philippe Diguet, “A co-design ap-

proach for embedded system modeling and code generation

with UML and MARTE”, Int Conf Design, Automation, and
Test in Europe - DATE , Nice (France), pp. 226-231, 2009.

[10] Julio L. Medina and Alejandro Pérez Ruiz, “High level

modeling for Real-time applications with UML & MARTE”,
the 25th Euromicro Conference on Real-Time Systems

(ECRTS‟13), Paris, France, pp 13-16, July 2013.

[11] J.R Abrial, “The B-book: Assigning programs to mean-
ings”, 1996.

[12] C. Métayer, J.-R. Abrial, L. Voisin. “Event-B Language”,

May 2005.

[13] Yamine AIT-Ait-Ameur & all. “Vérification et validation
formelles de systèmes interactifs fondées sur la preuve :

application aux systèmes multi-modaux,” IN Journal

d‟Interaction Personne-Système, Vol. 1, No. 1, Art. 3, Sep-
tembre 2010.

[14] Joey Coleman, Cliff Jones, Ian Oliver, Alexander Roma-

novsky, and Elena Troubitsyna, “RODIN (Rigorous Open
Development Environment for Complex Systems)”.

[15] Sylvain Collange, Yoginder S. Dandass, Marc Daumas,

and David Defour, “Using Graphics Processors for Paralleliz-
ing Hash-Based Data Carving”, In HICCS, Hawaii Interna-

tional Conference on System Sciences, pp 1-10, 2009.

[16] Peter N. Glaskowsky. “NVIDIA‟s Fermi: The First
Complete GPU Computing Architecture”, 2009:

http://www.nvidia.com/content/PDF/fermi_white_papers/P.Gl

askowsky_NVIDIA'sFermi-
he_First_Complete_GPU_Architecture.pdf

[17] Sylvain Collange, Marc Daumas, David Defour & Régis

Olivés, “Fonctions élémentaires sur GPU exploitant la localité
de valeurs”, In SYMPosium en

Architectures nouvelles de machines, Fribourg : Switzerland,

pp 1-11, 2008.

[18] Reiji Suda and Da Qi Ren, “Accurate Measurements and

Precise Modeling of Power Dissipation of CUDA Kernels

toward Power Optimized High Performance CPU-GPU Com-

puting”, In International Conference on Parallel and Distribut-

ed Computing, Applications and Technologies, pp 432-438,
Higashi Hiroshima, Japan 2009.

[19] Jason Sanders, Edward Kandrot. “ CUDA par l'exem-

ple ”, Pearson Education France, 2011.

http://65.54.113.26/Conference/618/date-design-automation-and-test-in-europe
http://65.54.113.26/Conference/618/date-design-automation-and-test-in-europe
http://webdali.univ-perp.fr/publis/Author/COLLANGE-S.html
http://webdali.univ-perp.fr/publis/Author/DAUMAS-M.html
http://webdali.univ-perp.fr/publis/Author/DEFOUR-D.html

	momaj vol02 N02 2013-2014 33
	momaj vol02 N02 2013-2014 34
	momaj vol02 N02 2013-2014 35
	momaj vol02 N02 2013-2014 36
	momaj vol02 N02 2013-2014 37
	momaj vol02 N02 2013-2014 38
	momaj vol02 N02 2013-2014 39
	momaj vol02 N02 2013-2014 40
	momaj vol02 N02 2013-2014 41
	momaj vol02 N02 2013-2014 42
	momaj vol02 N02 2013-2014 43
	momaj vol02 N02 2013-2014 44
	momaj vol02 N02 2013-2014 45
	momaj vol02 N02 2013-2014 46

