Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

heterogeneous Multiprocessor Architecture

Houssam Eddine ZAHAF
Oran University
Computer Science departement
31000, Oran, ALgeria
Email: Houssam-Eddine.zahaf@univ-lillel1.fr
Abou Elhassen BENYAMINA
Oran University
Computer Science departement
31000, Oran, Algeria
Email: benyanabou@yahoo.fr
Richard OLEJINIK
Lillel UniversityLiFL
59650, villeneuve d’ascq, France
Email: Richard.olejnik@lifl.fr

Abstract—Analyse data issued from Social networks,
large

scale wireless networks, .. is computation intensive, and
submitted to soft or hard real time constraints. The
main characteristic of these kind of applications is
that the execution time is greater than the deadline.
Thus, mono processor architectures can not satisfy
real time requirement of this type of applications.
Multiprocessors nowadays architectures consists of
numerous processors on one chip and allows to run tasks
in parallel manner and can handle the overrun of
these applications. In this paper, we present a novel
online scheduler for real times tasks where execution
time is greater than deadline. As application example,
we use MapReduce Real time environments to extract
simulation parameters and run tests on simS
simulateur.

I.INTRODUCTION

Real time schedulers schedule tasks based on their real
time charactiristics. Sporadic real time charactiristics
are the Arrival time (R), deadline (D), least period of
interactivation (P) , and worst case execution time
WCET or C. In general, The relative deadline is
greater than the execution time. However, Intensive
applications deals with a huge amount of data and the
WCET

is at least equal to deadline.

An important part of processing of an intesive
computing application can be run in parrallel. That
makes this applications more suitable to be run on
multiprocessor architectures than on monoprocessors
one. More than that, not any task set can be
schedulable on one core architecture.

Most real time scheduling works focus on
homogeneous MP- SoCs where all processors have the
same speed and the same power consumption.
However, Heterogeneous MPSoCs are more adiquate
in terms of energy consumption and computing speed.
In this work, we focus on scheduling intensive real

IIWMCS 2014 4

time tasks with energy constraints on uniform hardware
architectures. The aim of the work is to decompose the
real time task, to parrallel independant jobs with thier
own real time charactiristics and we present our
novel on line job-scheduler.

Unfortunately, schedulability test for heterogeneous
are much harder, it depends not only on tasks, but on
wich processor will run wich task.

. BACKGROUND
In this work, we consider a set of n sporadic tasks

on m processors. Each task is characterized by
quadruple (R: Arrival Time, Period Between two

activations: P, Deadline: D, WCET: Worst Case
Execution Time). Each task is independant, and

have an implicit parrallelized sections.

First, we will present prior works and

implementation of Map
Reduce Real time environments.

A. Taxonomy of multiprocessors

In terms of heterogeniety, MPSoCs can be classified
as:

. Homogenoues
Each task or job is run at the same speed on each
processor and consumes the same energy.

. Unifrom

Processors may habe different speeds, but a task that
runs in 3 time units on a processor with speed 1,
run in 1.5 time units on a processor with speed 2,
and 0.75 on processor of speed 4. Each processors
consumes at least quadratic of speed on energy
compared to a processor with speed 1.

Unrelated heterogenous

mailto:zahaf@univ-lille1.fr
mailto:zahaf@univ-lille1.fr
mailto:benyanabou@yahoo.fr
mailto:olejnik@lifl.fr

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

The execution time and the consumed energy depends
on the task and the processor at the same time.

In this work we will focus on uniform
architectures only.

B. Map Reduce Real Time environments

First, we will provide an overview on Map
Reduce and its open source implementation
Hadoop, and we focus after on Real-time Map
Reduce environments, Exactly Hadoop real time
implementations and Misco RT. We will discuss
them strength points and weaknesses. A. MapReduce
MapReduce [1] is parallelized, distributed
platform for large scale data processing. It
virtualizes task and data mapping and scheduling,
communication, running failure, fault tolerance
and all execution details.

Map Reduce is quite simple, it split a big
computing task [10] to smaller ones, each sub-task is
affected a worker node. These splits are independent
and each worker lunches a different piece of input
data. Task independence allows running tasks in
parallel manor and the re-run possibility for fault
tolerance. User defines only two functions Map and
Reduce. Map Task

is applied on a set of input data and produce jKey,
values;, the second function reduce allows to reduce
partial results and

producing final ones.

|Combine
|

Userl

Startlobl

SN .
Scrvice / : \Iilnrzs
—@ B .
\ y

\ /
»

Stoplobl

Stoplobl

Userl
Startiohl

Fig. 1. Map Reduce

1) Hadoop: Apache Hadoop is an open-source Map
Re- duce framework on clusters of commodity
hardware. Hadoop

is an Apache top-level project being built and used by
a global community of contributors and users.

The Apache Hadoop framework is composed of the
fol- lowing modules:

. Hadoop Common contains libraries

IIWMCS 2014 S5

and utilities needed by other Hadoop modules.
. Hadoop Distributed File System (HDFS)

. Hadoop YARN a resource-management
platform re- sponsible for managing compute
resources in clusters and using them for mapping
and scheduling of users applications.[12]

Java is the wused language with “Hadoop
Streaming” to implement the "map” and “reduce”
parts of the user’s program. The Hadoop framework
itself is mostly written in the Java, with some
native code in C and command line utilities written
as shell-scripts.

2) Hadoop Scheduler: Hadoop job schedulers are
FIFO, and fair scheduler, not like FIFO
scheduler fig 3, In fair scheduling, tasks not is
the top of the queue, may be scheduled by
assigning tasks into different pools, and assign
to each pool, minimum guaranteed share. Figure 2
and

3 show the difference between both of FIFO and fair
scheduler.

Each pool is characterized by the number of Map
and

Reduce slots and the number of the maximum jobs
assigned.

The scheduling algorithm is simple; first, it
splits each pools min share among its jobs and
split each pools total share among its jobs. When
a slot needs to be assigned: If there is any job
below its min share, schedule it. Else schedule

a chunk based dis

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

L1 1

Jok

L\

D@ D@ D@ q@

L1

wreae

Fig. 2. Fifo and Fair scheduler

the job that has heen most unfair to (based on
deficit).Phan

et al in [6] explored the feasibility of enabling
scheduling of mixed hard and soft real time map
reduce applications. They tried to investigate the
impact of some factors over the respect of time
constraints such as data placement, concurrent
users, and communication bandwidth.

The aim of the work of [6] is to use already
existed scheduling real time algorithms on EC2
Amazon cloud. The tried to provide a
scheduling algorithm to insure that hard real
time tasks meet their deadline and try to
satisfy soft real time constraints or at least
minimize tardiness.

They focus on three points, what can affect
the real time scheduling, based on results of the
first investigation; they formulated the problem
like a Constraint Satisfaction Problem CSP, the
third step was solving the problem with a
new heuristic for real time MapReduce tasks
scheduling.

First they define parameters influencing real time
schedul- ing as the number of map and reduce slots
per a cote, multiple concurrent jobs, data
placement, the interval of heart beats, and the
algorithm of scheduling itself. Scheduling
problem was formulated to a set of real
MapReduce applications on

a distributed heterogeneous architecture as a CSP,
which can be solved using well-known constraint
solvers. They focused first on the offline setting,

IIWMCS 2014 6

where the set of Map Reduce jobs are known a
priori and the role of the scheduler is then to
determine an optimal execution schedule for all
tasks. The novelty of [] is that the formulation
lies in the modeling of various factors unique to
the Map Reduce jobs. Specifically, formulation
considers slot-to-core ratio, the effect of input
data placement on the data transfer time (from a
remote or

a local host), and the interval based on heart
beats between the master and the slaves. The last
factor is the heterogeneity of the processors, where
a tasks execution time varies based on the slots
processing capability. The CSP formulation is
based on very restrictive assumptions like:

each job contains no more than one map stage and
one reduce stage. the worst-case execution time
(WCET) of a task on each processor type is known a
priori; all processors work perfectly without failure;
and there is no speculative execution and no task
migration.

The WCET assumption is necessary for real-time,
they used WCET evaluator described in[9]. Gecode
is the solver used to implement the formulated CSP.
We can denote the absence of energy in the
formulation, not only that but also the processor
failure, which is a common thing in embedded
hardware architectures. Using a solver is a high
cost for problems like scheduling and mapping.

C. Hadoop for soft Real Time

Dong X et al in [1] have proposed an
adaptation of Hadoop scheduler to support real time
constraints, it allows to schedule mixed real time and
no real time applications. The main contributions of
this work are task forward scheduler and resources
allocation model. The scheduler is compound of
three sub-schedulers, Real time scheduler called
deadline scheduler, no real time scheduler, and master
scheduler that combine both. Thus allows reusing no
real time schedulers. To grant real time constraints,
they had used on line execution time evaluator
proposed in [11]. One real time map and reduce job are
picked randomly and submitted to sampling phase.
The results of sampling phase are execution time for
map and reduce task. The approximated calculated
execution time is divided and added to correction
values. Real time and no real time applications are
queued equally, with a higher priority for real time
applications.

Queued tasks are managed by deadline scheduler, and
an existing no real time scheduler. If real time tasks
cannot get needed resources, they can preempt some
from non-real time tasks. In [1], The system assume

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

that the execution platform is homogeneous and all
input data have the same size. The aim of the deadline
scheduler is to maximize concurrent real time jobs on
the minimum number of resources, and determine if
scheduling a new task is feasible or not without
influencing already scheduled tasks. Resource
allocation modal aim to define the minimum size
of parallelized real time jobs in order to maximize
the number of concurrent real time jobs. Each cluster
is composed by Map nodes, reduce nodes, real time
map nodes, and real-time reduce nodes. A scheduled
task assign query, by arrival time, relative deadline,
the number of map and reduce tasks, execution time
for each map and reduce task. The second step is
defining the correct work load for each worker. It
tries to make jobs as small as possible so the number
of concurrent real time jobs is maximized. According
to [1] defining the Degree of parallelism (work load) is
optimal, and all the concurrent jobs have
approximately the same size of by time unit. Jobs
have the same size, execution platform homogeneous,
the DOP is equal for all tasks, all these can be noticed
as drawbacks and as restriction for this work. More,
energy consumption and data load and delivery time
impact is ignored.

D. Misco RT

Misco RT is a python implementation of Soft
real-time Map Reduce. Unlike works discussed
earlier, Misco RT runs on homogeneous embedded
architecture architectures and it considers processor
failures.

Misco architecture is simple, It comprises a Master
Server and a set of Worker nodes. Server maps and
schedules tasks on worker nodes, and Kkeeps the
execution tracks. The worker node is able to run
even a Map and Reduce task. Each task

is characterized by the father application and the
location of data (one input file), ready time, and
real time characteris- tics. The Misco system is
considered as a set of distributed applications Al,
A2, .., An, compound of a set of Map and Reduce
Tasks, applications are sporadic and their arrival
time

is unknown a priori witch makes the system less
predictable. The Master Server keeps track of user
applications, while the Worker Nodes are
responsible for performing the map and reduce
operations. The Misco server also maintains the
input, intermediary and result data associated with
the applications, keeps track of their progress and
determines how application tasks should be assigned
to workers.

The main responsibility for the Misco worker is to
process the individual map and reduce tasks and return
the results to the server. The Misco worker consists
of a Requester component,

a Task Repository component and a Logger

IIWMCS 2014

component. The Requester is used for interactions
with the Misco server to request tasks and
download and upload data, trigger the local
execution of the tasks, and handle the
communication with the Misco system during
upgrades. The Misco server is in charge of keeping
track of applications submitted by the user and
assigning tasks to workers. It comprises Scheduler
that implements our two-level scheduling scheme,
an Application Repository that keeps track of
application input and output data, and an HTTP
Server that serves as the main communi- cation
between the workers and the Misco server.

Real time characteristics are defined by the user,
and the execution time of an application depend on
Map and reduce times and data load and delivery
time. Misco RT applications and tasks scheduler is
based on LLF, each calculated laxity is considered
as its urgency. The main goal is not to reducing
delays but maximizing the number of
applications meeting their deadlines. However, this
can cause a running failure because a dropped task
will probably mean that all executed tasks of the
same application was in vain.

Worker in Misco failure is permanent or transient.
When a worker fails, all assigned tasks are lost. Server
computes failure rate and redistributes failed tasks.
Each free worker sends a request for jobs. Misco RT
platform runs only on homogeneous hardware
architectures, Misco platform is too much restricted,
and run only on homogeneous hardware
architecture, we denote also the absence of energy
consumption especially for an embedded system
like mobile phone, the reason for the platform
was ever developed, we can notice the absence of a
mechanism that insure the real time data transfer.

Real time applications are almost critical and data
sensitive, however, few works had focus on the
security aspect in map reduce environment, Roy et
al in [12] have proposed a MapReduce
environment with an enhanced security. Airavat

is a MapReduce-hased system which provides strong
security

and privacy guarantees for distributed computations
on sensi- tive data. Airavat is a novel integration
of mandatory access control and differential
privacy. Data providers control the security
policy for their sensitive data. Airavat confines
these computations, preventing information leakage
beyond the data providers policy. Airavat is
modular and can be integrated to any map reduce
platform. The prototype is efficient. Airavat will
not be discussed in this paper just mentioned
like a possible feature to complete limits of
security for other Real time map reduce works.

Il. CONTRIBUTION

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

Platform Global Monitor

The goal of our design is to provide more

deterministic real time treatment and grant low
energy consumption by exploiting the heterogeneity N -
of the hardware architecture. Our system design is

multilayer system, compound from 4 levels (fig 4)

Requester| ~—

' } o]

RT-Sched Non-RT- Sched DataSpliter

Applications level
Map Reduce Level

MapReduce Level
NB : No file system

e
is defined (different MAP Reduce Cluster

Cluster Cluster Cluste tjypej‘:" processed Manager -
data; 1T

Manager Manager Manag No RT Sched=FIFO

Jamaica VM Java-VM Jamica \ A A
Fig. 4. Component connections
PE—PE—PE PE—PE—PE PE—P
|

PEPEPE PEPEPE PETP 5o free processors and memory. Each Reduce
pE_IPE_PE tasks then are higher priority than every Map

Fig. 3. Our design
Figd. System design architecture
A. Application layer

In this layer the user defines each application by
defining its map and reduce task with the real time
characteristic (Type: Periodic or sporadic, Offset,
Arrival Time, deadline) and data size, data
location, splitible parameter witch define if a task
can be spliced into subtasks to be run on parallel or
not. MRID

is an integer that expresses the precedence order of
a set of map tasks and one reduce task, semantically
it means that the reduce task will reduce the results
of that map tasks. And its defined automatically by
the system. B. MapReduce Layer: It contains our
main contributions. It consists of 5 entities, Real-
time scheduler, requester, Data Splitter, Entities
connection are shown in fig 6.

B. Scheduler

Applications scheduler is a fair scheduler with a
maximum share per queue. Task scheduler is EDF
(earliest deadline First) based scheduler, both of
map and reduce tasks are sorted by deadline. In an
obvious manor, Reduce tasks will be placed after
the correspondent Map tasks (its deadline equals
the deadline of the last map task plus its
execution time). The second consist to give reduce
tasks a better scheduling, because running the reduce
task, mean concluding a set of processing,

IIWMCS 2014

task that does not equal to its MRID. Ready time
for a Reduce task is computed, and not given by
the user; it equals the last execution time for the
last correspondent Final map task (see section data
splitter).

C. Requester

It takes the scheduled task and sends a request
to each processor in order to get free fits that
corresponds between the arrival time and
deadline of the selected task. It sends arrival
time, deadline, and data size to each worker
node. These lasts must reply by the executing fit.
the execution rate, and the energy consumed if
the map task will occupy that free fit. Each
reply will be : (Processor, fit, execution rate,
energy consumed). All replies will be sent to data
splitter. The evaluation of the energy consumed
and the execution rate will be discussed in section
worker

D. Data Splitter

Compound from two levels, Solver and launcher.
It takes the results of requester and tries to find
the best solution that grant the execution of the
task and the low consumption. The formulation
of that problem is defined in formula 1.

A reasonable solution is a solution where the sum
of rates equals or higher than 1. If a fit is
considered then xi =1 else

=0. To exclude over running values we introduce
the objective function min P. Minimize the
energy consumed is the most important objective.
The energy consumed depends on several
parameters discussed in section worker.

. P
MInE = ej *Xj

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

. P
MinP = pj *Xj

pi *Xj =1

To solve this problem, we use a branch and bound

resolution method.
v FPexT xSy

E. Worker

The worker is able to run both of map and reduce

tasks, It contains three main modules, Load
P = e V*Sf
WCET +T1 *Sd *V

E =Pe +v2 +Sq

The Worst case load time and worst case execution
time are not so deterministic values, so the
monitors scale the computing speed to take benifit
for unused inter fit space.

For simulation, we use SimSo simulator, It is an
simulator for real time on multiprocessors uniform
hardware architecture. Our approach stills in tests
phases, and the final results will be published as soon
as possible

(AVA CONCLUSIONS

Our design can be easily plugged to Misco RT, or
Hadoop, its modular and simple, however our design
is for embedded hardware architecture like MPSoCs
Based NoC, Hadoop is too much computational for
such hardware architecture, Misco

is too much restricted, so we implemented our Map
Reduce environment mainly in java with some native
C code.

REFERENCES

[1] Dong, X., Wang, Y., Liao, H. (2011, December).
Scheduling mixed real- time and non-real-time
applications in mapreduce environment. In Par- allel
and Distributed Systems (ICPADS), 2011 IEEE 17th
International Conference on(pp. 9-16). IEEE.

[2] Dou, A., Kalogeraki, V. Gunopulos, D.
Mielikainen, T. Tuulos, V. H. (2010, June). Misco:
a MapReduce framework for mobile systems. In
Proceedings of the 3rd international conference on
pervasive technologies related to assistive environments
(p. 32). ACM.

[3] Dou, A. J, Kalogeraki, V., Gunopulos, D.,
Mielikainen, T., Tuulos, V. (2011, July). Scheduling
for real-time mobile MapReduce systems. In
Proceedings of the 5th ACM international
conference on Distributed event-based system

[4] Mishra, R., Rastogi, N., Zhu, D., Moss, D.,
Melhem, R. (2003, April).

IIWMCS 2014

Evaluator, runner, and log

register. a) Load Evaluator It calculates the
execution rate P and the correspondent consumed
energy E based on data load time, data size, Worst case
execution time, data delivery time. What we can
execute in a fit equals:

Sf =P+ WCET

[12] Lam, C.(2010). Hadoop in action, Manning
Publications Co.

Energy aware scheduling for distributed real-time
systems. In Parallel and

Distributed Processing Symposium, 2003. Proceedings.
International (pp.

9-pp). IEEE.

[61 Dou, A. J., Kalogeraki, V., Gunopulos, D.,
Mielikainen, T., Tuulos, V. (2011, July). Scheduling
for real-time mobile MapReduce systems. In
Proceedings of the 5th ACM international
conference on Distributed event-based system (pp.
347-358). ACM.

[6] Phan, L. T., Zhang, Z., Loo, B. T., Lee, I.
(2010). Real-time MapReduce scheduling.

[7] Elespuru, P. R., Shakya, S., Mishra, S. (2009).
MapReduce system over heterogeneous mobile devices.
In Software technologies for embedded and
ubiquitous systems (pp. 168-179). Springer Berlin
Heidelberg.

[8] Owens, J. D., Houston, M., Luebke, D., Green,
S., Stone, J. E., Phillips,

J. C. (2008). GPU computing. Proceedings of the
IEEE, 96(5), 879-899.

[9] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti,
N., Thesing, S., Whalley, D., Stenstrm, P. (2008). The
worst-case execution-time problemoverview of
methods and survey of tools. ACM Transactions
on Embedded Computing Systems (TECS), 7(3), 36.
[10] Polo, J, Castillo, C., Carrera, D., Becerra, Y.,
Whalley, 1., Steinder, M., Ayguad, E. (2011).
Resource-aware adaptive scheduling for MapReduce
clusters. In Middleware 2011 (pp. 187-207). Springer
Berlin Heidelberg

[11] Roy, I, Setty, S (2010, April). Airavat:
Security and privacy for

MapReduce . In NSDI (Vol. 10,pp. 297-312).

	momaj vol02n01 2014 4
	momaj vol02n01 2014 5
	momaj vol02n01 2014 6
	momaj vol02n01 2014 7
	momaj vol02n01 2014 8
	momaj vol02n01 2014 9

