
Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

4 IIWMCS 2014

heterogeneous Multiprocessor Architecture

Houssam Eddine ZAHAF

Oran University

Computer Science departement

31000, Oran, ALgeria

Email: Houssam-Eddine.zahaf@univ-lille1.fr

Abou Elhassen BENYAMINA

Oran University

Computer Science departement

31000, Oran, Algeria

Email: benyanabou@yahoo.fr

Richard OLEJNIK

Lille1 UniversityLiFL

59650, villeneuve d‘ascq, France

Email: Richard.olejnik@lifl.fr

Abstract—Analyse data issued from Social networks,

large

scale wireless networks, .. is computation intensive, and

submitted to soft or hard real time constraints. The

main characteristic of these kind of applications is

that the execution time is greater than the deadline.

Thus, mono processor architectures can not satisfy

real time requirement of this type of applications.

Multiprocessors nowadays architectures consists of

numerous processors on one chip and allows to run tasks

in parallel manner and can handle the overrun of

these applications. In this paper, we present a novel

online scheduler for real times tasks where execution

time is greater than deadline. As application example,

we use MapReduce Real time environments to extract

simulation parameters and run tests on simS

simulateur.

I.INTRODUCTION

Real time schedulers schedule tasks based on their real

time charactiristics. Sporadic real time charactiristics

are the Arrival time (R), deadline (D), least period of

interactivation (P) , and worst case execution time

WCET or C. In general, The relative deadline is

greater than the execution time. However, Intensive

applications deals with a huge amount of data and the

WCET

is at least equal to deadline.

An important part of processing of an intesive

computing application can be run in parrallel. That

makes this applications more suitable to be run on

multiprocessor architectures than on monoprocessors

one. More than that, not any task set can be

schedulable on one core architecture.

Most real time scheduling works focus on

homogeneous MP- SoCs where all processors have the

same speed and the same power consumption.

However, Heterogeneous MPSoCs are more adiquate

in terms of energy consumption and computing speed.

In this work, we focus on scheduling intensive real

time tasks with energy constraints on uniform hardware

architectures. The aim of the work is to decompose the

real time task, to parrallel independant jobs with thier

own real time charactiristics and we present our

novel on line job-scheduler.

Unfortunately, schedulability test for heterogeneous

are much harder, it depends not only on tasks, but on

wich processor will run wich task.

II. BACKGROUND

In this work, we consider a set of n sporadic tasks

on m processors. Each task is characterized by

quadruple (R: Arrival Time, Period Between two

activations: P, Deadline: D, WCET: Worst Case

Execution Time). Each task is independant, and

have an implicit parrallelized sections.

First, we will present prior works and

implementation of Map

Reduce Real time environments.

A. Taxonomy of multiprocessors

In terms of heterogeniety, MPSoCs can be classified

as :

• Homogenoues

Each task or job is run at the same speed on each

processor and consumes the same energy.

• Unifrom

Processors may habe different speeds, but a task that

runs in 3 time units on a processor with speed 1,

run in 1.5 time units on a processor with speed 2,

and 0.75 on processor of speed 4. Each processors

consumes at least quadratic of speed on energy

compared to a processor with speed 1.

• Unrelated heterogenous

mailto:zahaf@univ-lille1.fr
mailto:zahaf@univ-lille1.fr
mailto:benyanabou@yahoo.fr
mailto:olejnik@lifl.fr

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

5 IIWMCS 2014

The execution time and the consumed energy depends

on the task and the processor at the same time.

In this work we will focus on uniform

architectures only.

B. Map Reduce Real Time environments

First, we will provide an overview on Map

Reduce and its open source implementation

Hadoop, and we focus after on Real-time Map

Reduce environments, Exactly Hadoop real time

implementations and Misco RT. We will discuss

them strength points and weaknesses. A. MapReduce

MapReduce [1] is parallelized, distributed

platform for large scale data processing. It

virtualizes task and data mapping and scheduling,

communication, running failure, fault tolerance

and all execution details.

Map Reduce is quite simple, it split a big

computing task [10] to smaller ones, each sub-task is

affected a worker node. These splits are independent

and each worker lunches a different piece of input

data. Task independence allows running tasks in

parallel manor and the re-run possibility for fault

tolerance. User defines only two functions Map and

Reduce. Map Task

is applied on a set of input data and produce ¡Key,

values¿, the second function reduce allows to reduce

partial results and

producing final ones.

1) Hadoop: Apache Hadoop is an open-source Map

Re- duce framework on clusters of commodity

hardware. Hadoop

is an Apache top-level project being built and used by

a global community of contributors and users.

The Apache Hadoop framework is composed of the

fol- lowing modules:

• Hadoop Common contains libraries

and utilities needed by other Hadoop modules.

• Hadoop Distributed File System (HDFS) a chunk based distributed file-system.

• Hadoop YARN a resource-management

platform re- sponsible for managing compute

resources in clusters and using them for mapping

and scheduling of users applications.[12]

Java is the used language with ‖Hadoop

Streaming‖ to implement the ‖map‖ and ‖reduce‖

parts of the user‘s program. The Hadoop framework

itself is mostly written in the Java, with some

native code in C and command line utilities written

as shell-scripts.

2) Hadoop Scheduler: Hadoop job schedulers are

FIFO, and fair scheduler, not like FIFO

scheduler fig 3, In fair scheduling, tasks not is

the top of the queue, may be scheduled by

assigning tasks into different pools, and assign

to each pool, minimum guaranteed share. Figure 2

and

3 show the difference between both of FIFO and fair

scheduler.

Each pool is characterized by the number of Map

and

Reduce slots and the number of the maximum jobs

assigned.

The scheduling algorithm is simple; first, it

splits each pools min share among its jobs and

split each pools total share among its jobs. When

a slot needs to be assigned: If there is any job

below its min share, schedule it. Else schedule

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

6 IIWMCS 2014

Fig. 2. Fifo and Fair scheduler

the job that has been most unfair to (based on

deficit).Phan

et al in [6] explored the feasibility of enabling

scheduling of mixed hard and soft real time map

reduce applications. They tried to investigate the

impact of some factors over the respect of time

constraints such as data placement, concurrent

users, and communication bandwidth.

The aim of the work of [6] is to use already

existed scheduling real time algorithms on EC2

Amazon cloud. The tried to provide a

scheduling algorithm to insure that hard real

time tasks meet their deadline and try to

satisfy soft real time constraints or at least

minimize tardiness.

They focus on three points, what can affect

the real time scheduling, based on results of the

first investigation; they formulated the problem

like a Constraint Satisfaction Problem CSP, the

third step was solving the problem with a

new heuristic for real time MapReduce tasks

scheduling.

First they define parameters influencing real time

schedul- ing as the number of map and reduce slots

per a cote, multiple concurrent jobs, data

placement, the interval of heart beats, and the

algorithm of scheduling itself. Scheduling

problem was formulated to a set of real

MapReduce applications on

a distributed heterogeneous architecture as a CSP,

which can be solved using well-known constraint

solvers. They focused first on the offline setting,

where the set of Map Reduce jobs are known a

priori and the role of the scheduler is then to

determine an optimal execution schedule for all

tasks. The novelty of [] is that the formulation

lies in the modeling of various factors unique to

the Map Reduce jobs. Specifically, formulation

considers slot-to-core ratio, the effect of input

data placement on the data transfer time (from a

remote or

a local host), and the interval based on heart

beats between the master and the slaves. The last

factor is the heterogeneity of the processors, where

a tasks execution time varies based on the slots

processing capability. The CSP formulation is

based on very restrictive assumptions like:

each job contains no more than one map stage and

one reduce stage. the worst-case execution time

(WCET) of a task on each processor type is known a

priori; all processors work perfectly without failure;

and there is no speculative execution and no task

migration.

The WCET assumption is necessary for real-time,

they used WCET evaluator described in[9]. Gecode

is the solver used to implement the formulated CSP.

We can denote the absence of energy in the

formulation, not only that but also the processor

failure, which is a common thing in embedded

hardware architectures. Using a solver is a high

cost for problems like scheduling and mapping.

C. Hadoop for soft Real Time

Dong X et al in [1] have proposed an

adaptation of Hadoop scheduler to support real time

constraints, it allows to schedule mixed real time and

no real time applications. The main contributions of

this work are task forward scheduler and resources

allocation model. The scheduler is compound of

three sub-schedulers, Real time scheduler called

deadline scheduler, no real time scheduler, and master

scheduler that combine both. Thus allows reusing no

real time schedulers. To grant real time constraints,

they had used on line execution time evaluator

proposed in [11]. One real time map and reduce job are

picked randomly and submitted to sampling phase.

The results of sampling phase are execution time for

map and reduce task. The approximated calculated

execution time is divided and added to correction

values. Real time and no real time applications are

queued equally, with a higher priority for real time

applications.

Queued tasks are managed by deadline scheduler, and

an existing no real time scheduler. If real time tasks

cannot get needed resources, they can preempt some

from non-real time tasks. In [1], The system assume

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

7 IIWMCS 2014

that the execution platform is homogeneous and all

input data have the same size. The aim of the deadline

scheduler is to maximize concurrent real time jobs on

the minimum number of resources, and determine if

scheduling a new task is feasible or not without

influencing already scheduled tasks. Resource

allocation modal aim to define the minimum size

of parallelized real time jobs in order to maximize

the number of concurrent real time jobs. Each cluster

is composed by Map nodes, reduce nodes, real time

map nodes, and real-time reduce nodes. A scheduled

task assign query, by arrival time, relative deadline,

the number of map and reduce tasks, execution time

for each map and reduce task. The second step is

defining the correct work load for each worker. It

tries to make jobs as small as possible so the number

of concurrent real time jobs is maximized. According

to [1] defining the Degree of parallelism (work load) is

optimal, and all the concurrent jobs have

approximately the same size of by time unit. Jobs

have the same size, execution platform homogeneous,

the DOP is equal for all tasks, all these can be noticed

as drawbacks and as restriction for this work. More,

energy consumption and data load and delivery time

impact is ignored.

D. Misco RT

Misco RT is a python implementation of Soft

real-time Map Reduce. Unlike works discussed

earlier, Misco RT runs on homogeneous embedded

architecture architectures and it considers processor

failures.

Misco architecture is simple, It comprises a Master

Server and a set of Worker nodes. Server maps and

schedules tasks on worker nodes, and keeps the

execution tracks. The worker node is able to run

even a Map and Reduce task. Each task

is characterized by the father application and the

location of data (one input file), ready time, and

real time characteris- tics. The Misco system is

considered as a set of distributed applications A1,

A2, .., An, compound of a set of Map and Reduce

Tasks, applications are sporadic and their arrival

time

is unknown a priori witch makes the system less

predictable. The Master Server keeps track of user

applications, while the Worker Nodes are

responsible for performing the map and reduce

operations. The Misco server also maintains the

input, intermediary and result data associated with

the applications, keeps track of their progress and

determines how application tasks should be assigned

to workers.

The main responsibility for the Misco worker is to

process the individual map and reduce tasks and return

the results to the server. The Misco worker consists

of a Requester component,

a Task Repository component and a Logger

component. The Requester is used for interactions

with the Misco server to request tasks and

download and upload data, trigger the local

execution of the tasks, and handle the

communication with the Misco system during

upgrades. The Misco server is in charge of keeping

track of applications submitted by the user and

assigning tasks to workers. It comprises Scheduler

that implements our two-level scheduling scheme,

an Application Repository that keeps track of

application input and output data, and an HTTP

Server that serves as the main communi- cation

between the workers and the Misco server.

Real time characteristics are defined by the user,

and the execution time of an application depend on

Map and reduce times and data load and delivery

time. Misco RT applications and tasks scheduler is

based on LLF, each calculated laxity is considered

as its urgency. The main goal is not to reducing

delays but maximizing the number of

applications meeting their deadlines. However, this

can cause a running failure because a dropped task

will probably mean that all executed tasks of the

same application was in vain.

Worker in Misco failure is permanent or transient.

When a worker fails, all assigned tasks are lost. Server

computes failure rate and redistributes failed tasks.

Each free worker sends a request for jobs. Misco RT

platform runs only on homogeneous hardware

architectures, Misco platform is too much restricted,

and run only on homogeneous hardware

architecture, we denote also the absence of energy

consumption especially for an embedded system

like mobile phone, the reason for the platform

was ever developed, we can notice the absence of a

mechanism that insure the real time data transfer.

Real time applications are almost critical and data

sensitive, however, few works had focus on the

security aspect in map reduce environment, Roy et

al in [12] have proposed a MapReduce

environment with an enhanced security. Airavat

is a MapReduce-based system which provides strong

security

and privacy guarantees for distributed computations

on sensi- tive data. Airavat is a novel integration

of mandatory access control and differential

privacy. Data providers control the security

policy for their sensitive data. Airavat confines

these computations, preventing information leakage

beyond the data providers policy. Airavat is

modular and can be integrated to any map reduce

platform. The prototype is efficient. Airavat will

not be discussed in this paper just mentioned

like a possible feature to complete limits of

security for other Real time map reduce works.

III. CONTRIBUTION

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

8 IIWMCS 2014

The goal of our design is to provide more

deterministic real time treatment and grant low

energy consumption by exploiting the heterogeneity

of the hardware architecture. Our system design is

multilayer system, compound from 4 levels (fig 4)

Fig. 3. Our design

Fig4. System design architecture

A. Application layer

In this layer the user defines each application by

defining its map and reduce task with the real time

characteristic (Type: Periodic or sporadic, Offset,

Arrival Time, deadline) and data size, data

location, splitible parameter witch define if a task

can be spliced into subtasks to be run on parallel or

not. MRID

is an integer that expresses the precedence order of

a set of map tasks and one reduce task, semantically

it means that the reduce task will reduce the results

of that map tasks. And its defined automatically by

the system. B. MapReduce Layer: It contains our

main contributions. It consists of 5 entities, Real-

time scheduler, requester, Data Splitter, Entities

connection are shown in fig 6.

B. Scheduler

Applications scheduler is a fair scheduler with a

maximum share per queue. Task scheduler is EDF

(earliest deadline First) based scheduler, both of

map and reduce tasks are sorted by deadline. In an

obvious manor, Reduce tasks will be placed after

the correspondent Map tasks (its deadline equals

the deadline of the last map task plus its

execution time). The second consist to give reduce

tasks a better scheduling, because running the reduce

task, mean concluding a set of processing,

Fig. 4. Component connections

so free processors and memory. Each Reduce

tasks then are higher priority than every Map

task that does not equal to its MRID. Ready time

for a Reduce task is computed, and not given by

the user; it equals the last execution time for the

last correspondent Final map task (see section data

splitter).

C. Requester

It takes the scheduled task and sends a request

to each processor in order to get free fits that

corresponds between the arrival time and

deadline of the selected task. It sends arrival

time, deadline, and data size to each worker

node. These lasts must reply by the executing fit.

the execution rate, and the energy consumed if

the map task will occupy that free fit. Each

reply will be : (Processor, fit, execution rate,

energy consumed). All replies will be sent to data

splitter. The evaluation of the energy consumed

and the execution rate will be discussed in section

worker

D. Data Splitter

Compound from two levels, Solver and launcher.

It takes the results of requester and tries to find

the best solution that grant the execution of the

task and the low consumption. The formulation

of that problem is defined in formula 1.

A reasonable solution is a solution where the sum

of rates equals or higher than 1. If a fit is

considered then xi =1 else

=0. To exclude over running values we introduce

the objective function min P. Minimize the

energy consumed is the most important objective.

The energy consumed depends on several

parameters discussed in section worker.

M inE =
P

ei ∗ xi

Models & Optimisation and Mathematical Analysis Journal Vol.02 Issue 01 (2014)

9 IIWMCS 2014

V

M inP =
P

pi ∗ xi

P
pi ∗ xi ≥ 1

To solve this problem, we use a branch and bound

resolution method.

E. Worker

The worker is able to run both of map and reduce

tasks, It contains three main modules, Load

Evaluator, runner, and log

register. a) Load Evaluator : It calculates the

execution rate P and the correspondent consumed

energy E based on data load time, data size, Worst case

execution time, data delivery time. What we can

execute in a fit equals:

Sf = Pe ∗
W C ET

[12] Lam, C.(2010). Hadoop in action, Manning

Publications Co.

P =
V ∗Sf

W C ET +Tl ∗Sd ∗V

E = Pe ∗ v
2 ∗ Sd

The Worst case load time and worst case execution

time are not so deterministic values, so the

monitors scale the computing speed to take benifit

for unused inter fit space.

For simulation, we use SimSo simulator, It is an

simulator for real time on multiprocessors uniform

hardware architecture. Our approach stills in tests

phases, and the final results will be published as soon

as possible

IV. CONCLUSIONS

Our design can be easily plugged to Misco RT, or

Hadoop, its modular and simple, however our design

is for embedded hardware architecture like MPSoCs

Based NoC, Hadoop is too much computational for

such hardware architecture, Misco

is too much restricted, so we implemented our Map

Reduce environment mainly in java with some native

C code.

REFERENCES

[1] Dong, X., Wang, Y., Liao, H. (2011, December).

Scheduling mixed real- time and non-real-time

applications in mapreduce environment. In Par- allel

and Distributed Systems (ICPADS), 2011 IEEE 17th

International Conference on(pp. 9-16). IEEE.

[2] Dou, A., Kalogeraki, V., Gunopulos, D.

Mielikainen, T. Tuulos, V. H. (2010, June). Misco:

a MapReduce framework for mobile systems. In

Proceedings of the 3rd international conference on

pervasive technologies related to assistive environments

(p. 32). ACM.

[3] Dou, A. J., Kalogeraki, V., Gunopulos, D.,

Mielikainen, T., Tuulos, V. (2011, July). Scheduling

for real-time mobile MapReduce systems. In

Proceedings of the 5th ACM international

conference on Distributed event-based system

[4] Mishra, R., Rastogi, N., Zhu, D., Moss, D.,

Melhem, R. (2003, April).

Energy aware scheduling for distributed real-time

systems. In Parallel and

Distributed Processing Symposium, 2003. Proceedings.

International (pp.

9-pp). IEEE.

[5] Dou, A. J., Kalogeraki, V., Gunopulos, D.,

Mielikainen, T., Tuulos, V. (2011, July). Scheduling

for real-time mobile MapReduce systems. In

Proceedings of the 5th ACM international

conference on Distributed event-based system (pp.

347-358). ACM.

[6] Phan, L. T., Zhang, Z., Loo, B. T., Lee, I.

(2010). Real-time MapReduce scheduling.

[7] Elespuru, P. R., Shakya, S., Mishra, S. (2009).

MapReduce system over heterogeneous mobile devices.

In Software technologies for embedded and

ubiquitous systems (pp. 168-179). Springer Berlin

Heidelberg.

[8] Owens, J. D., Houston, M., Luebke, D., Green,

S., Stone, J. E., Phillips,

J. C. (2008). GPU computing. Proceedings of the

IEEE, 96(5), 879-899.

[9] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti,

N., Thesing, S., Whalley, D., Stenstrm, P. (2008). The

worst-case execution-time problemoverview of

methods and survey of tools. ACM Transactions

on Embedded Computing Systems (TECS), 7(3), 36.

[10] Polo, J., Castillo, C., Carrera, D., Becerra, Y.,

Whalley, I., Steinder, M., Ayguad, E. (2011).

Resource-aware adaptive scheduling for MapReduce

clusters. In Middleware 2011 (pp. 187-207). Springer

Berlin Heidelberg

[11] Roy, I, Setty, S (2010, April). Airavat:

Security and privacy for

MapReduce . In NSDI (Vol. 10,pp. 297-312).

	momaj vol02n01 2014 4
	momaj vol02n01 2014 5
	momaj vol02n01 2014 6
	momaj vol02n01 2014 7
	momaj vol02n01 2014 8
	momaj vol02n01 2014 9

