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Abstract— In this paper the material used is electro-
elastic and the friction and it is modeled with Tresca's
law and the foundation is assumed to be electrically
conductive. First we derive the well posedness
mathematical model. In the second step, we give the
classical variational formulation of the model which is
given by a system coupling an evolutionary variational
equality for the displacement field and a time-
dependent variational equation for the potential field.
Then we prove the existence of a unique weak solution
to the model by using the Banach fixed-point Theorem.
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1. INTRODUCTION

We consider the antiplane contact problem for
electro-elastic materials with Tresca friction law.
In this new work, we assume that the
dispalcement is parallel to the generators of the
cylinder and is dependent of the axial coordinate.
Our interest is to describe a physical process (for
more details see [1, 4, 5, 6, 7, 8]) in which both
antiplane shear, contact, state of material with
Trescafriction law and piezoelectric effect are
involved, leading to a well posedness
mathematical problem. In the variational
formulation, this kind of problem leads to an
integro-differential inequality. The main result we
provide concerns the existence of a unique weak
solution to the model, see for instance [2, 3, 6] for
details.

The rest of the paper is structured as follows. In
Section s:2 we describe the well posedness
mathematical model of the frictional contact
process between electro-elastic body and a
conductive deformable foundation. In Section s:3
we derive the variational formulation. It consists
of a variational inequality for the displacement
field coupled with a time-dependent variational
equation for the electric potential. We state our
main result, the existence of a unique weak
solution to the model in Theorem 3.1. The Proof
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of the Theorem is provided in the end of Section

s: 4, where it is based on arguments of
evolutionary inequalities, and a fixed point
Theorem.

2. THE MODEL

In this section, we consider a piezoelectric
body B identified with a region in IRt
occupies in a fixed and undistorted reference
configuration. We assume that B is a cylinder

with generators parallel to the X3 -axes with a
cross-section which is a regular region € in the

%y : X2 -plane, being a Cartesian
coordinate system. The cylinder is assumed to be
sufficiently long so that the end effects in the
axial direction are  negligible. Thus,
B=Qx(=0+%)  The cylinder is acted upon by
fo

OX1X2 X3

and has volume free

electric charges of density % . It is also
constrained mechanically and electrically on the
boundary. To describe the boundary conditions,
we denote by 2?=I" the boundary of @ and
we assume a partition of I into three open
Iy

body forces of density

disjoint parts , T2 and I3 , on the one hand,

and a partition of "1“T2 into two open parts 'a

To , on the other hand. We assume that the

hoand Ta |

and
one-dimensional measure of
denoted meas 't and meas ra,are positive.

FiGURE 1. Deformable solid € on contact with a rigid foundation

The cylinder is clamped on T1x(=0:40) - ang
therefore the displacement field vanishes there.
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f,

Surface tractions of density act on

2 x(=04%)  \We also assume that the electrical

Iy x (—o0,+0)

potential vanishes on and a surface

electrical charge of density 92
T}, x (—o0,400)

is prescribed on

. The cylinder is in contact over

T3x(=+)  \yith a conductive obstacle, the so

called foundation. The contact is frictional and is
modeled with Tresca's law. We are interested in

where4 and # are the Lame coefficients

é@=Ei M) 1 jsthe unit tensor in R®, A
is the electric permittivity constant, E represents

the third-order piezoelectric tensor and E is its
transpose. In the antiplane context (5), (6), using
the constitutive equations (7), (8) it follows that
the stress field and the electric displacement field
are given by

0 0 o013
the deformation of the cylinder on the time o= 0 0 oy (9)
interval [©T] . We assume that 031 032 0
£=(0,0, fo)with fg = fo(xg, Xp.t): Qx[0,T]>IR, (1)
eu1—Lfea
£=(0,0, fy) with £ = f(x, Xo,t): Tx[0T] >R, (2) D=|eus—Bpo | (10)
)
where
Go=0o(x1, X2.t) : Qx[OT]>IR, (3)
013 =031 = MOy, U
G2 =02(X1, X2,t): TH x[0,T]>IR.  (4) and
The forces (1), (2) and the electric charges (3), 023=037 = iy, U.
(4) would be expected to give rise to
deformations and to electric charges of the We assume that
piezoelectric cylinder corresponding to a e(e1at 3D
displacement U and to an electric potential field 1375t 3
X Es=|e(sp3+232) | Ve=(gj)es®, (11)
# which are independent on "3 and have the €e33
the form . . . -
_ where € is a piezoelectric coefficient. We also
u=00u) with u=u(q, xp.0): 2XOTI>R R e that the coefficients #,#  and  ©
depend on the spatial variables *L, *2 |, but are
o=900 x.0) : Qx[0TI>IR- (6) independent on the spatial variable X3 Since
Such kind of deformation, associated to a Ec:v=e-E"v for g £€5°, velR® it follows

displacement field of the form (3), is called an
antiplane shear.

The infinitesimal strain tensor is denoted
s =) and the stress field by (i)
We also denote by E@=E@)  ihe electric

field and by D= the electric displacement

field. Here and below, in order to simplify the
notation, we do not indicate the dependence of

X X X

various functions on 3 or t and we

recall that
1
&j(u) =E(Ui,j +Uji). Ei(p)=-0,.

The material's is modeled by the following
electro-elastic constitutive law with Tresca
friction law

o=A(tr e()I+2ue(u)—EE(p),

D=Es(u)+/E(p), (8)

™

23

from (e) that

0 0
0 ©

Lvl evo

We assume that the process is mechanically
quasistatic and electrically static and therefore is
governed by the equilibrium equations

Divo+fy=0, Djj—-gg=0 in Bx[0,T],

evq
evo

J vv=(vj)elR3. (12)

evg

Divo = (o i )
where PV =(%i.3) renresents the divergence

of the tensor field ¢ . Taking into account (1),
3), (5), (6), (9) and (10), the equilibrium
equations above reduce to the following scalar
equations

div(uVu+eVe)+ fp =0, inQx[0,T], (13)

div(eVu— V) =0qp, in 2x[0,T]. (14)

Here and below we use the notation
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diVT:T]_’lJrTl’z in T=(Tl(X1, X2), Tz(Xl, X2))

and

Vv = (V]_‘ Vz) , OV =V +Vorn for

V=V(Xy, X2)

We now describe the boundary conditions.
During the process the cylinder is clamped on

Tix(=04%) and the electric potential vanish on
Tyx(=e4) - thys, (5) and (6) imply that
u=0 onIy x[0,T], (15)

»=0 onT x[0,T]. (16)

Let v denote the unit normal on I x (—o0,4)
. We have

\ =(V1, V2,0)With Vi =Vi(X1, X2): I —-IR, i=l,2.

For avector YV we denote by v and Ve its
normal and tangential components on the
boundary, given by

v, =v-v, v, =v-v,v. (18)

For a given stress field © we denote by v

and Oz the normal and the tangential

components on the boundary, that is
(19)
From (9), (10) and (17) we deduce that the

Cauchy stress vector and the normal component
of the electric displacement field are given by

ov=(0,0,u0,u+ed,p), D-v=ed u—p0,p. (20)

oy, =(ov)-v, o, =0v-o,V.

Taking into account (2), (4) and (20), the

traction condition on '2*(=*%) and the electric

conditions conditions on o> ()

by

are given

o u+ed,p="fy onTy x0,T],[(21)
ed,u—Lo,¢=qp onljx[0,T).(22)

We now describe the frictional contact
condition and the electric conditions on

T3> (==+9) First, from (5) and (17) we infer that

the normal displacement vanishes, " =9 which
shows that the contact is bilateral, that is, the
contact is kept during all the process. Using now
(5) and (17)-(19) we conclude that

u; =(0,0,u), o, =(0,0,0,) (23)
where

o, =(0,0, 10, u+ed,p).

Qa7

24

We assume that the friction is invariant with

respect to the X3 axis and is modeled with

Tresca's friction law, that is

0,if u=0,
o ()= _
T leoth i uz0 onT3x(0T).(24)
Here 9182+ s a given function, the

friction bound, and U, represents the tangential
velocity on the contact boundary. Using now (23)
it is straightforward to see that the friction law
(24) implies

0,if u=0,

MO U+e0,p= _
T =gt if u=0 onT3x(0,T).(25)
Next, since the foundation is electrically

conductive and the contact is bilateral, we assume
that the normal component of the electric
displacement field or the free charge is
proportional to the difference between the
potential on the foundation and the body's
surface. Thus,

D-v=q on I}, x(0,T),

Then, we get

|

Finally, we use (20) and the previous equality to
obtain

eu1 Sy,
eu—fo.

}v =gy on I x(0,T). (26)
0

ed u—f0,p=0p on Iy x(0,T). (27)

We collect the above equations and
conditions to obtain the following mathematical
model which describes the antiplane shear of an
electro-viscoelastic cylinder in frictional contact
with a conductive foundation.

Problem P. Find

fieldu:Q—IR and the electric potential 9 : Q>R

the  displacement

such that
div(uVu)+div(eVe)+ fg =0, inQ, (28)
div(eVu)-div(aVe)=0gpin€Q, (29)

u=0 onTy, (30)
wu+ed,p="fy only, (31)

0,if u=0,

MO U+e0,¢p= 51
—g[

if u=0 onTI3y,(25)

»=0 onTy,, (33)
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ed,u—ad,p=0qy onTy. (34)

Note that once the displacement field Y and
the electric potential # which solve Problem P
are known, then the stress tensor < and the
electric displacement field D can be obtained
by using the constitutive laws (9) and (10),
respectively.

3. VARIATIONAL FORMULATION

O Hi) we use the
LP(0,T:X)

For a real Banach space

usual notation for the spaces and

wk’p(o,T;x) where 1SP<e k=12.. . e also
denote by CUOTEX)  the space of continuous
and continuously differentiable functions on
[O.T] with valuesin X , with the norm

= max ||x(t)||X

||X||C([0,T];X) te[0,T]

and we use the standard notations for the

L2(0,T: X)

Lebesgue space as well as the

wh2(0,T;X)

Sobolev space . In particular, recall

2 .
that the norm on the space “ @T:X) s given by
the formula

2 2
luliz 0.7 = Ig Juy dt

2 .
and the norm on the space W™ (0T:X)

by the formula
Julfy 207 x) =18 I ot 5 Jacol . (38)

is given

Finally, we suppose the argument X when
X =IR ; thus, for example, we use the notation

w20,T) for the space WZ2(OT;IR) and the
notation [z, forthenorm [l py -

In the study of the Problem P we assume that
the viscosity coefficient satisfy:

and the electric permittivity coefficient satisfy

£ L”(Q)andthereexists #* > 0suchthat B(x)> 8" a.e.x 8

(39)
We also assume that the Lame coefficient
and the piezoelectric coefficient satisfy

uel”(Q) (40)
and
u(x)>0 a.exeQ,(41)
ecL®(Q).(42)

The forces, tractions, volume and surface free
charge densities have the regularity

fo € L2(Q),(43)
fp € L2(I),(44)
do € L*(9),(45)
Az € L*(T}p)-(46)

The friction bound function ¢
following properties

satisfies the

g eL™(I3) and g(x)>0 a.e.x eI3.(47)

and, moreover,

aﬂ(uo,v)v +j(v) = (f(0),v)y VveV.(48)

We define now the functional
given by the formula

jVoIR,

. 1
V) =—=I,glvl"!da weVv.(49)

s+1
We also define the mappings fev and
gqeW , respectively, by
(V) =g fovax+p, fovda,(50)
and
(@yw =Iqdow dx—Jr, dzw da,(51)
forall vev , wew and te[0T] . The

definition of f and g are based on Riesz's
representation theorem; moreover, it follows from
assumptions by (42)-(43), that the integrals above
are well-defined and

f eL2(Q),(52)

qel?(©).63)

Next, we define the bilinear formsa,:
VxV IR, a.: VxW IR, ,and a,: WxW IR
, by equalities

a, (u,v) = [ uVu-Vvdx,(54)
ag (U, ) = [ne VU - Vedx,(55)
ag(p.w)=[nBVe Vi dx (56)
forall uvev, @wew . Assumptions (49)-(51)
imply that the integrals above are well defined

Sand, using (37) and (18), it follows that the forms
a,and a, are continuous; moreover, the forms

a, and a, aresymmetric and, in addition, the
form a, is w -elliptic, since

a () za’yll, vvew. (57)

4. MAIN RESULTS

The variational formulation of Problem P is
based on the

25
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Lemma 1 For all (u,p) in space X =Vxw, Proof. We have two step to proof our
then we get Theorem.

Step 1: Problemev 1= Problemev 2

jQqu.V(vfu)dx+erqu.V(vfu)dx+ij(|v|s+lf|u|s+1)da2 P = o

s+lr, In the first step we ill suppose that

Io fo(v—u)dx+fp, fa(v—-u)da,v(v,p) e X =V xW,V(u,p) e X=(4,pY&(#8)s solution of Problemev 1. We

change in (78) the element

Proof. We introduce relation (50) in the weWby (y-p)ewand we add the resulting
previous relation, then, we have equation to the two sides of the inequality (77),

) ) hence, we obtain:
a,(uv-u)+ag(pv-u)+ j(v)— ju) = (f,v-uly,WeV,VpeW,(71)

a,(u,v—u)+ag(p,v-u)+ag(py —g)-ag(y—p)+

+j(v) = j(w=(f,v-u)y +(qw - ,WWweV,VpeW.(83
which conclude the proof of lemma 1. =3 =( W+ @y =Pl TV EV T WY

Lemma 2. For all element ew and for all Using now notations (79), (80) and (81) then
(u.p)eV xW , then, we have for all yew and forall yeX , we get
ae(p.y) —aguy) =y, Vi eW.(72) a (xy-x)+J(X)=J(y)=(F,y—xX)x,Vy e X.(84)
dFEQZ?f' It is immediately by using (29), (33) which conclude the proof of the first step.
an .

) o Step 2: Problemev 2= Problemev 1
We collect the above equations and conditions

to obtain the following variational formulation In ths second step we will suppose that
which describes the antiplane shear of an electro-  x=(u.¢)eX is solution of Problemev 2. We
viscoelastic cylinder in frictional contact with a  change the bilinear form a(,) by (79),
conductive foundation. (F,y—x)x by (81) and the functional J() by (80);
Problemev 1. Find a displacement field then, forall (v.y)e X , we obtain
u:Q-vand an electric potential field
¢ QW such that au UV - +aelpv-u+asoy -g)+
+jW) - jW)=(f.v-uly + @y -y, Vv eV,VpeW.(85)
a,(uv-u)+ag(pv-u)+ j(v) - jlu) = (f,v-u)y,vweV,vVpeW, (77)

We test in the last inequality (85) with w=¢,

ae(00) —ag(Uw) = (AW Yy eW.(78) then we obtain (77). Next, we take v=uand
Let now using the bilinear form: v-e=pty-gin (84), it follows that for all
’ weWw !

a(.,):XxX->R
(03)> (X, Y) =2, (0.9)+ 2 (0.9) 3 ) -2 () X = ) X, vy = (v fEAATEY) ~ e (029) 2 (A WV €V, Vi €W, (86)

which conclude the proof of the second. Then,
the functional the _ Problemev 1 and Problemev 2 are
equivalent.
J(): X—>R
X+ J(X) = j(u),vx = (u,p) € X,(80)
Our main existence and uniqueness result,

and the function which we state now and prove in the next section,

F=(f,q)eX.(8D) is the following:
Now, using notations (79)-(81), the Problem Theorem 4. Assume that (39)-(57) hold. Then
(77)-(78) take the final form: the variational Problemev 2 possesses a unique
. solution x=(u,p)e X satisfies
Problemev 2. Find a couple
x = (u,) € X such that a (xy—-x)+J(X)=J(y)=(F,y—x)x,Vy e X.(87)
a (xy-x)+3I()-JI()2(F,y-x)x,VyeX.(82) We note that an element *={%) which solves

Problem®V 1 js scalled a weak solution of the

i PV 1
Theorem 3. The Problemev 1  and antiplane contact Problem X._ije gonclude by
Problemev 2 are equivalent. Theorem 3 that the element *~'“%’also solves
Problem®V 2 then the element * is called a
weak solution of the antiplane contact

26
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ProblemPV 2. Hence, the antiplane contact
Problem P has a unique weak solution, provided
that (39)-(57).

Proof of Theorem 4.

The Proof of Theorem 4 which will be carried
out in several steps and it is immediately to obtain
our result of existence and uniqueness of the
weak solution.
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