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Abstract— In this paper the material used is electro-

elastic and the friction and it is modeled with Tresca's 

law and the foundation is assumed to be electrically 

conductive. First we derive the well posedness 

mathematical model. In the second step, we give the 

classical variational formulation of the model which is 

given by a system coupling an evolutionary variational 

equality for the displacement field and a time-

dependent variational equation for the potential field. 

Then we prove the existence of a unique weak solution 

to the model by using the Banach fixed-point Theorem. 
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1. INTRODUCTION 
We consider the antiplane contact problem for 

electro-elastic materials with Tresca friction law. 

In this new work, we assume that the 

dispalcement is parallel to the generators of the 

cylinder and is dependent of the axial coordinate. 

Our interest is to describe a physical process (for 

more details see [1, 4, 5, 6, 7, 8]) in which both 

antiplane shear, contact, state of material with 

Trescafriction law and piezoelectric effect are 

involved, leading to a well posedness 

mathematical problem. In the variational 

formulation, this kind of problem leads to an 

integro-differential inequality. The main result we 

provide concerns the existence of a unique weak 

solution to the model, see for instance [2, 3, 6] for 

details. 

The rest of the paper is structured as follows. In 

Section s:2 we describe the well posedness 

mathematical model of the frictional contact 

process between electro-elastic body and a 

conductive deformable foundation. In Section s:3 

we derive the variational formulation. It consists 

of a variational inequality for the displacement 

field coupled with a time-dependent variational 

equation for the electric potential. We state our 

main result, the existence of a unique weak 

solution to the model in Theorem 3.1. The Proof 

of the Theorem is provided in the end of Section 

s: 4, where it is based on arguments of 

evolutionary inequalities, and a fixed point 

Theorem. 

2. THE MODEL 
       In this section, we consider a piezoelectric 

body  B   identified with a region in  
3IR   it 

occupies in a fixed and undistorted reference 

configuration. We assume that  B   is a cylinder 

with generators parallel to the  3x
 -axes with a 

cross-section which is a regular region     in the  

1x
 ,  2x

 -plane,  321 xxOx
  being a Cartesian 

coordinate system. The cylinder is assumed to be 

sufficiently long so that the end effects in the 

axial direction are negligible. Thus,  
),( B  . The cylinder is acted upon by 

body forces of density  0f   and has volume free 

electric charges of density  0q
 . It is also 

constrained mechanically and electrically on the 

boundary. To describe the boundary conditions, 

we denote by     the boundary of     and 

we assume a partition of     into three open 

disjoint parts  1  ,  2   and  3  , on the one hand, 

and a partition of  21    into two open parts  a   

and  b  , on the other hand. We assume that the 

one-dimensional measure of  1   and  a  , 

denoted meas  1   and meas  a , are positive. 

 

     The cylinder is clamped on  ),(1    and 

therefore the displacement field vanishes there. 
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Surface tractions of density  2f   act on  
),(2   . We also assume that the electrical 

potential vanishes on  
),( a   and a surface 

electrical charge of density  2q   is prescribed on  
),( b  . The cylinder is in contact over  
),(3 
  with a conductive obstacle, the so 

called foundation. The contact is frictional and is 

modeled with Tresca's law. We are interested in 

the deformation of the cylinder on the time 

interval  ],0[ T  . We assume that  

)1(    ,],0[:),,(),0,0( 210000 IR Ttxxffwithff

 

)2(      ,],0[:),,(),0,0( 212222 IR Ttxxffwithff

 

)3(    ,],0[:),,( 2100 IR Ttxxqq  

)4(      .],0[:),,( 2122 IR Ttxxqq b  

The forces (1), (2) and the electric charges (3), 

(4) would be expected to give rise to 

deformations and to electric charges of the 

piezoelectric cylinder corresponding to a 

displacement  u   and to an electric potential field  

   which are independent on  3x
  and have the 

the form  

)5(    ,],0[:),,(),0,0( 21 IR Ttxxuuwithuu

  

)6(   .],0[:),,( 21 IR Ttxx  

 Such kind of deformation, associated to a 

displacement field of the form (3), is called an 

antiplane shear. 

The infinitesimal strain tensor is denoted  
))(()( uu ij

  and the stress field by  
)( ij
 . 

We also denote by  
))(()(  iEE

  the electric 

field and by  
)( iDD
  the electric displacement 

field. Here and below, in order to simplify the 

notation, we do not indicate the dependence of 

various functions on  1x
,  2x

,  3x
  or  t   and we 

recall that  

.,)(),(
2

1
)( ,, iiijjiij Euu  u  

The material's is modeled by the following 

electro-elastic constitutive law with Tresca 

friction law  

)7(      ,)()(2))((  EEuIutr
  

),()( EuD  E   (8) 

where   and   are the Lame coefficients 

))(()( uu ij ,  I   is the unit tensor in  
3IR  ,     

is the electric permittivity constant,  E   represents 

the third-order piezoelectric tensor and  

E   is its 

transpose. In the antiplane context (5), (6), using 

the constitutive equations (7), (8) it follows that 

the stress field and the electric displacement field 

are given by  

,

0
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D    (10) 

 where  

ux13113    

 and  

.
23223 ux   

We assume that  

,)()(

)(
3

33

3223

3113

SE 


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















 ij

e

e

e









    (11) 

where  e   is a piezoelectric coefficient. We also 

assume that the coefficients  ,    and  e   

depend on the spatial variables  1x ,  2x  , but are 

independent on the spatial variable  3x
 . Since  

vv
 EE    for all 

3
S ,  

3IRv , it follows 

from (e) that  

.)(00

00
3

321

2

1

IR

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




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

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
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iv

evevev

ev

ev

vvE   (12) 

We assume that the process is mechanically 

quasistatic and electrically static and therefore is 

governed by the equilibrium equations  

0,0 0,0  qD iifDiv   in  ],0[ TB  ,   

 where  
)( , jij Div
  represents the divergence 

of the tensor field    . Taking into account (1), 

(3), (5), (6), (9) and (10), the equilibrium 

equations above reduce to the following scalar 

equations  

)13(  ],,0[,0)( 0 Tinfeu  div   

)14(  ].,0[,)( 0 Tinque  div  

Here and below we use the notation 



Models & Optimisation and Mathematical Analysis Journal Vol.03 Issue 01 (2015) 

 

24 
 

2,11,1  div   in  )),(),,(( 212211 xxxx    

and 

),( 21 vvv    ,  2211/  vv    for  

),( 21 xxvv   

We now describe the boundary conditions. 

During the process the cylinder is clamped on  

),(1    and the electric potential vanish on  
),(1   ; thus, (5) and (6) imply that  

],,0[ on0 1 Tu      (15)  

].,0[ on0 Ta     (16) 

Let     denote the unit normal on  ),(   

. We have  

 )17(      .2,1,:),()0,,( 2121  ixxwithv ii IR

 

For a vector  v   we denote by  v   and v
its 

normal and tangential components on the 

boundary, given by  

.,   vv  vvv   (18) 

For a given stress field     we denote by     

and     the normal and the tangential 

components on the boundary, that is  

.,)(        (19) 

  From (9), (10) and (17) we deduce that the 

Cauchy stress vector and the normal component 

of the electric displacement field are given by  

.),,0,0(    ueeu  D    (20) 

Taking into account (2), (4) and (20), the 

traction condition on  ),(2    and the electric 

conditions conditions on  
),( b   are given 

by  

)22).(,0[ on

)21[(],,0 on

2

22

Tque

Tfeu

b 









  

 

We now describe the frictional contact 

condition and the electric conditions on  
),(3 
 . First, from (5) and (17) we infer that 

the normal displacement vanishes, 
0u , which 

shows that the contact is bilateral, that is, the 

contact is kept during all the process. Using now 

(5) and (17)-(19) we conclude that  

),0,0(),,0,0(   uu  (23) 

 where  

).,0,0(    eu  

We assume that the friction is invariant with 

respect to the  3x
  axis and is modeled with 

Tresca's friction law, that is  











 

)24).(,0( on   0u  i,

0,u if ,0
)(

3
1

Tfug
t s  

 Here   IR3:g
  is a given function, the 

friction bound, and u
  represents the tangential 

velocity on the contact boundary. Using now (23) 

it is straightforward to see that the friction law 

(24) implies   











 

)25).(,0( on   0u  i,

0,u if ,0

3
1

Tfug
eu s 

 

Next, since the foundation is electrically 

conductive and the contact is bilateral, we assume 

that the normal component of the electric 

displacement field or the free charge is 

proportional to the difference between the 

potential on the foundation and the body's 

surface. Thus,  

),,0(on2 Tq b D  

Then, we get  

).,0(on.

0

,,

,,

222

11

Tqeu

eu

b 
























(26) 

Finally, we use (20) and the previous equality to 

obtain 

).,0(on2 Tque b      (27) 

     We collect the above equations and 

conditions to obtain the following mathematical 

model which describes the antiplane shear of an 

electro-viscoelastic cylinder in frictional contact 

with a conductive foundation. 

Problem P. Find the displacement 

field u : IR  and the electric potential : IR   

such that 

)28(  ,,0)()( 0  infeu  divdiv  

)29(   ,)()( 0  indivdiv que   

, on0 1u (30) 

, on 22  feu   (31) 











 

)25(, on   0u  i,

0,u if ,0

3
1

fug
eu s   

, on0 a  (33) 
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. on2 bque     (34) 

Note that once the displacement field  u   and 

the electric potential     which solve  Problem P  

are known, then the stress tensor     and the 

electric displacement field  D   can be obtained 

by using the constitutive laws (9) and (10), 

respectively. 

 

3. VARIATIONAL FORMULATION 

 
For a real Banach space  

).,(
X

X
  we use the 

usual notation for the spaces  );,0( XTLp
  and  

XTW pk ;,0(,
) where  ,...2,1,1  kp  ; we also 

denote by  )];,0([ XTC   the space of continuous 

and continuously differentiable functions on  
],0[ T   with values in  X  , with the norm  

XTtXTC
txx )(max

],0[)];,0([ 
  

 and we use the standard notations for the 

Lebesgue space  );,0(2 XTL   as well as the 

Sobolev space  );,0(2,1 XTW  . In particular, recall 

that the norm on the space  );,0(2 XTL   is given by 

the formula  

dttuu
X

T
XTL

2
0

2

);,0(
)(2   

 and the norm on the space  );,0(2 XTW   is given 

by the formula  

.)()(
2

0
2

0
2

);,0(2,1 dttudttuu
X

T
X

T
XTW

 (38) 

 Finally, we suppose the argument  X   when  
IRX   ; thus, for example, we use the notation  

),0(2 TW   for the space  );,0(2 IRTW   and the 

notation  
),0(2.

TW
  for the norm  

);,0(2.
RTW

 . 

In the study of the Problem P we assume that 
the viscosity coefficient satisfy: 

and the electric permittivity coefficient satisfy  

. a.e. )( that such 0 exists  thereand )(  
xx  L

(39) 

 We also assume that the Lame coefficient 
and the piezoelectric coefficient satisfy  

)42).((

)41(, a.e. 0)(

and

)40()(











Le

L

xx



 

The forces, tractions, volume and surface free 
charge densities have the regularity  

)46).((

)45(),(

)44(),(

)43(),(

2
2

2
0

2
2

2

2
0

bLq

Lq

Lf

Lf









 

The friction bound function  g   satisfies the 

following properties  

)47.( a.e. 0)(and)( 33  
xxgLg  

and, moreover,  

)48.()),0(()(),( 0 Vvvfvjvua VV    

 

We define now the functional   IRVj :   

given by the formula  

)49.(||
1

1
)( 1

3
Vvdavg

s
vj s 


 

   

We also define the mappings  Vf    and  

Wq  , respectively, by  

)50(,),( 20
2

davfdxvfvf V      

 and 

)51(,),( 20 daqdxqq
b

W       

for all  Vv  ,  W   and  ],0[ Tt  . The 

definition of  f   and  q   are based on Riesz's 

representation theorem; moreover, it follows from 
assumptions by (42)-(43), that the integrals above 
are well-defined and  

)53).((

)52(),(

2

2





Lq

Lf
 

Next, we define the bilinear forms a : 

eaVV ,IR :  ,IRWV , and  a :  IRWW  

, by equalities  

)56(,),(

)55(,),(

)54(,),(

dxa

dxueua

dxvuvua

e























 

for all  Vvu , ,  W, . Assumptions (49)-(51) 

imply that the integrals above are well defined 
and, using (37) and (18), it follows that the forms 

a and ea  are continuous; moreover, the forms  

a   and  a   are symmetric and, in addition, the 

form  a   is  W -elliptic, since  

.),(
2

Wa
W

     (57) 

 

4. MAIN RESULTS 
 

The variational formulation of  Problem P is 
based on the  
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Lemma 1 For all ),( u  in space WVX  , 

then we get 

)58.(),(,),(,)()(

)(
1

1
)(.)(.

20

11

2

3

WVXuWVXvdauvfdxuvf

dauv
s

dxuvedxuvu
ss



 















 

Proof. We introduce relation (50) in the 
previous relation, then, we have 

)71(,,,),()()(),(),( WVvuvfujvjuvauvua Ve  

 

which conclude the proof of lemma 1. 

Lemma 2. For all element W and for all 

WVu ),(  , then, we have 

)72.(,),(),(),( Wquaa We     

Proof. It is immediately by using (29), (33) 
and (34). 

 

We collect the above equations and conditions 

to obtain the following variational formulation 

which describes the antiplane shear of an electro-

viscoelastic cylinder in frictional contact with a 

conductive foundation. 

Problem 1 PV . Find a displacement field 
u : V and an electric potential field 

 : W such that  

)77(,,,),()()(),(),( WVvuvfujvjuvauvua Ve  

 

)78.(,),(),(),( Wquaa We     

Let now using the bilinear form: 

)79(,),(,),(),,(),(),(),(),(),(

:(.,.)

XvyXuxuaavavuayxayx

RXXa

ee 



 

 

the functional 

)80(,),(),()(

:(.)

XuxujxJx

RXJ






 

and the function 

)81.(),( XqfF   

Now, using notations (79)-(81), the Problem 
(77)-(78) take the final form: 

Problem 2 PV . Find a couple 
Xux  ),(  such that 

)82.(,),()()(),( XyxyFyJxJxyxa X   

 

Theorem 3. The Problem 1 PV  and 
Problem 2 PV  are equivalent. 

Proof. We have two step to proof our 
Theorem. 

Step 1: Problem 1 PV  Problem 2 PV  

In the first step we ill suppose that 
Xux  ),(  is solution of Problem 1 PV . We 

change in (78) the element  

W by W )(  and we add the resulting 

equation to the two sides of the inequality (77), 
hence, we obtain: 

)83.(,,),(),()()(

),(),(),(),(

WVvquvfujvj

uaauvauvua

WV

e







 

 

Using now notations (79), (80) and (81) then 
for all W and for all Xy , we get  

)84.(,),()()(),( XyxyFyJxJxyxa X   

which conclude the proof of the first step. 

 

Step 2: Problem 2 PV  Problem 1 PV   

In ths second step we will suppose that 
Xux  ),(  is solution of Problem 2 PV . We 

change the bilinear form .)(.,a  by (79), 

XxyF ),(  by (81) and the functional (.)J  by (80); 

then, for all Xv ),(  , we obtain 

)85.(,,),(),()()(

),(),(),(

WVvquvfujvj

auvauvua

WV

e







 

 

We test in the last inequality (85) with   , 

then we obtain (77). Next, we take uv  and 

  in (84), it follows that for all 

W  : 

)86(,,,),(),(),( WVvqaa We    

which conclude the proof of the second. Then, 
the Problem 1 PV  and Problem 2 PV  are 
equivalent. 

 

Our main existence and uniqueness result, 
which we state now and prove in the next section, 
is the following: 

Theorem 4. Assume that (39)-(57) hold. Then 
the variational Problem 2 PV  possesses a unique 
solution  Xux  ),(    satisfies     

)87.(,),()()(),( XyxyFyJxJxyxa X   

We note that an element ),( ux   which solves 

Problem 1 PV  is scalled a weak solution of the 

antiplane contact Problem 1 PV . We conclude  by 

Theorem 3 that the element  ),( ux  also solves 

Problem 2 PV , then the element x  is called a 

weak solution of the  antiplane contact 
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Problem 2 PV . Hence, the antiplane contact  

Problem  P has a unique weak solution, provided 

that (39)-(57).  

 

Proof of Theorem 4. 
 

The Proof of Theorem 4 which will be carried 

out in several steps and it is immediately to obtain 

our result of existence and uniqueness of the 

weak solution.  
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