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Abstract—In this paper, we establish sufficient con-
ditions for the existence of solutions for a class of initial
value problem for impulsive functional differential
equations with variable times involving infinite state-
dependent delay.
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delay, fixed point, infinite delay, impulses, variable
times.

I. INTRODUCTION

HIS paper deals with the existence of solutions

to the initial value problems (IVP for short) for
the second differential equations with variable times
and state dependent delay of the form,

y'(t) = f(t, Ypry), ae. t€J=1[0,0, (1)
t# Tk(y(t))7 k=1,.. 'vm’y(tJr) = Ik(y(t)),

2)
t=m1x(y(t), k=1,...,m, 3)
y( ) T(()) t_T/f( (t))akzla"'7m’
“)
y(t) = é(t), te (—00,0], &)
y'(0) =, (6)

where f : J x B — R, p:JxB = (—o0,b,
I, I, : R — R, k=1,...,m are given continuous
functions, ¢ € B, y(tt) = hm y(t + h) and

y(t™) = hhr(r)1 y(t + h) represent the right and left

hand limits of y(¢) at t and B is a phase space
to be specified later. For any function y and any
t € J, we denote by y; the element of B defined
by y:(8) = y(t + 6) for § € (—o0,0]. We assume
that the histories ¥, belong to B.

The notion of the phase space B plays an important
role in the study of both qualitative and quantitative
theory. A usual choice is a semi-normed space satis-
fying suitable axioms, which was introduced by Hale
and Kato [15] (see also Kappel and Schappacher
[20] and Schumacher [30]. For a detailed discussion
on this topic we refer the reader to the book by
Hino er al. [18]. For the case where the impulses
are absent, an extensive theory has been developed
for the problem (1)-(6). We refer to Hale and Kato
[15], Corduneanu and Lakshmikantham [9], Hino et
al. [18], Lakshmikantham et al [25].

Impulsive differential equations have become more
important in recent years in some mathematical
models of real processes and phenomena studied
in control, physics, chemistry, population dynamics,
biotechnology and economics. There has been a
significant development in impulse theory, in recent
years, especially in the area of impulsive differential
equations with fixed moments, see the monographs of
Benchohra et al. [5], Lakshmikantham et al. [25] and
Samoilenko and Perestyuk [29] and the references
therein. The theory of impulsive differential equa-
tions with variable times is relatively less developed
due to the difficulties created by the state-dependent
impulses. Some interesting results have been done
by Bajo and Liz [1], Benchohra et al. [3], [7] and
Benchohra and Ouahab [8], Frigon and O’Regan
[10], [11], [12], Graef and Ouahab [13], Kaul e al.
[21], Kaul and Liu [22], [23], Lakshmikantham et
al. [26], [27] and Liu and Ballinger [28]. The results
of the present paper extend those considered in the
above cite literature for constant delay. Our approach
here is based on the nonlinear alternative of Leray-
Schauder type [14].
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II. PRELIMINARIES

In this section, we introduce notations, definitions,
and preliminary facts which are used throughout this
paper. By C'(J, R) we denote the Banach space of all
continuous functions from J into IR with the norm

[yl == sup{|y(t)| : t € J}.

In this paper, we will employ an axiomatic defini-
tion of the phase space B introduced by Hale and
Kato in [15] and follow the terminology used in
[19], but we will add some transformations. Thus
(B,]| - ||g) will be a seminormed linear space of
functions mapping (—o0, 0] into R.

L'(J,R) denotes the Banach space of measurable
functions y : J — IR which are Lesbegue integrable
normed by

b
Iyl = / ly(t)]dt.

ACY(J,R) denote the space for all differentiable
functions whose first derivative is absolutely contin-
uous.

Definition IL.1. The map f : J x B — R is said to
be Carathéodory if:

(1) The function t — f(t,u) is measurable for
each u € B

(ii) The function u — f(t,u) is continuous for a.e.
teJ

Consider the sets
PC = {y :[0,8] = R : y which there exist
0<t; <ty <..<tmy1 =D such that

te = mi(y(ty,))
and

y(t0),y(ty)
exists with,

y(te) = yltr) k

]-7 coe,Mm, Y € C(kalR)}v
where vy, is the restriction of y to Jy, = (tx, tk+1],

k=1,...,m,

and

By ={y: (=00,b] : y|(—cc,0) € B and y|; € PC}.

Let ||.||» the seminorm in B, defined by

Iylls = llvolls +sup{|y(t)| : 0 <t < b}, y € By.

For the definition of the phase space 3 we intro-
duce the following axioms.

(A If y

(—00,b) = R,b > 0, yo € B, the
following conditions hold :

Oy €B,

(ii) There exists a positive constant H such that
()| < Hllyels

(iii) There exist two functions K (-),M(-) :
J = RT, independent of y, with K continuous
and M locally bounded such that :

lyells < K (8) sup{ |y(s)] : 0 < s < t}4+M()]|yol|5-

(A2) The space B is complete.

Denote K, = sup{K(t)

:t € J} and M,

sup{M (t) : t € J}.

B

{y (_0070] -

R,y is continuous every where except for a finite

number of points 7 at which y(Z"), y(") exist and

y(t

Definition

) =y()}

IL.2. A  function Y €

B,NUi~, ACY((t;,ti41),IR) is to be a solution
of (1)-(6) if y satisfies y" (t) = f(t,Yp(1y,)) a-e t €

J = 0,8, t £ m@y®), £k = 1,...

,m, the

conditions y(t*) = Ii(y(t)), v (") = Tr(y(t))

t

k = 1,... and

7k (y(1)), ,m,

y(t) = ¢(1), t € (—00,0], y'(0) = 1.

We are now in a position to state and prove our
result for the problem (1) — (6).

III. EXISTENCE OF SOLUTIONS

In this section we will present an existence result
for the problem (1)-(6). First, we introduce the fol-
lowing hypotheses.

(Hy)
(H2)

(Hy) The function t — ¢; is continuous from

R(p™) = {p(s,0) : (s,0) € J x B, p(s,¢) <
0} into B and there exists a continuous and
bounded function L? : R(p~) — (0,00) such
that ||¢¢||s < L?(t)||¢||s for every t € R(p™).
The function f : J x B — IR is Carathéodory,
There exists p € L'(J,R ) and 1 : [0,00) —
(0, 00) continuous and nondecreasing such that

|f(t,w)] < p(t)(||ul|g) for eacht € J and all u € B,

K /Obp(é’)ds < /Coo Jg)’

where C' = M,||¢|| s + Kp|¢(0)].

with
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€ CYR,R) for k

(H3) The functions 7y
1,...,m. Moreover

0<m(z) <...<7m(z) <bforall z € R.
(Hy) For all z € R

7 (Ik(2)) < (%) < Thogo1 (I (2))
fork=1,...,m.

(Hs) For all a € J fixed, y € By and for ae. t € J
we have

(O [ (6= 15 vp)ds # 1
fork=1,...,m.

(Hg) The functions I, I, k = 1,2,... are

continuous.

,m
The next result is consequence of the phase space
axioms.

Lemma IIL1. Ify : (—oo,b] = R is a function such
that yo = ¢ and y|; € PC(J,R), then

lyslls < (My + L?)|6]|5
+ Ky sup{|ly(0)[|; 0 € [0, max{0, s}]}

, SER(pT)U,
where
L? = sup L°(t).
teER(p™)

Remark IIL1. We remark that condition (Hy) is
satisfied by functions which are continuous and
bounded. In fact, if the space B satisfies axiom Co
in [19] then there exists a constant L > 0 such that
l6ls < Lsup{ll6()] : 6 € [o0,0]} for every
¢ € B that is continuous and bounded (see [19]
Proposition 7.1.1) for details. Consequently,

sup [|¢(60)]|
0<0

11l

Theorem IIL.1. Assume that hypotheses (Hy), (H1)-
(Hg). Then the problem (1)-(6) has at least one
solution on (—o0,b].

oells < L 16lls, for every ¢ € B\{0}.

Proof. The proof will be given in a couple of steps.
Step 1: Consider the initial value problem

y/,(t) = f(ta yp(t,yt)), a.e. t € J,
y(t) = ¢(t), te (—o0,0],
y'(0) = 7.

(7
®)
©))

10

Set
C={y:(—oc0,b]: Y|(—o0,0) € Band y € C(J,R)}.
Define the operator N : C—C by:

N(y)(t) =

¢(t)7
if te(—o0,0],

mm+m+Au—@ﬂawwyw
if te]0,b].

Clearly the fixed point of N are solutions to (7)—(9).

Let 2(.) : (—o0,b] — R be the function defined by:
¢(t)7 if te (70070]5
x(t) =
6(0)+1tn,  if tel0,b].

Then zo = ¢. For each z € B, with z5 = 0, we
denote by z the function defined by

0, if te (—o0,0],
zZ(t) = {
z(t),

If y(-) satisfies the integral equation

if te0,b].

Mﬂzﬂ®+m+l@*$ﬂawwwﬁ-

We can decompose y(.) into y(t) = z(t) + z(t),
0 <t < b, which implies y; = Z; + x;, for every

t € [0,b], and the function z(-) satisfies

t
/0 (t - S)f(&zp(s,fs—kms) + xp(s,Es—l-zS))dS'

Co={2€C:2 =0}
Let ||.||o be the norm in Cy defined by

[zllo = l|lz0ll5 + sup{|z(s)| : 0 < s < b}
= sup{|z(s)] : 0 < s < b} = ||z]|s-

We define the operator P : Cy — Cy by

t
P(Z)(t) :A (t_s)f(saZp(s,zs—i-.ts)+mp(s,25+xs))ds‘

Obviously the operator N has a fixed point is equiv-
alent to P has one, so we need to prove that P
has a fixed point. We shall show that P satisfies
the assumptions of Leray-Schauder alternative. The
proof will be given in several Claims.

Claim 1: P is continuous.
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Let {y™} be a sequence such that y§ = 0 and
y™ — y in Cy. Then for each t € J,

(Py™) (1) — (Py)(1)] < / (= $)£(5: 50 )
- f(s, yp(s,ys))|d5

b
g/o L VA CHTATNRY
— f(S, yp(s,ys))|'

Since f is Carathéodory we have f (5792(5,%(5))) —
J(8,Yp(s,y,)) @8 n — oo, for every s € J. Now
a standard application of the Lebesgue dominated
convergence theorem implies that

|IPy™ — Pyllo > 0 as n — oco.

and then P is continuous.

Claim 2: P maps bounded set into a bounded set
Of CO.

Indeed it is enough to show that for any ¢ > 0,
there exists a positive constant ¢ such that for each
z€ By, ={2€Cp: ||zllo < ¢}, one has |P(z)]lo <
L.

Let z € B, by (Hz) we have for each t € J,

t
P()(0) < / 1t — sl (5: o o)
+ xp(s,Eerws))”dS

t
< / 1t — 1) Zp ez, 0
)ds

< Y(Kyq
T K0(0)] + Myl 6]s)) / = sip(s)ds
< $(Kyg + Ko $(0)
b
+§wb||¢s>> / £ — slp(s)ds

Claim 3: P maps bounded sets into equicontinuous
sets of Co.

Let 71,72 € [0,b], 71 < T2, let B, a bounded set
of Cp as in Claim 2, and let z € B,
then

(P2)(r2) — (P2)(m)| < | / " (72— ) (5, Yoy s D

- / (73— $)F (5, Yp(o.y )]

<1 [ e
~ [T = i
[ = 95 s
- [ = s )

< / (72— ) (5, Upioyy)ds]
+] / 71— 8) (5, Yp(ongey)ds]

< 9 (lpto D / (72 — m1)ds|
T / 1 — )ds])

) / )(72 — m)ds]
+ \/ )(m1 — s)ds]).

Where

q" = Kyq + Kp|o(0)| + M| 9|5

We see that |(Pz)(m2) — (Pz)(m1)] tend to zero inde-
pendently of z € B, as 7, — 71. As a consequence
of claims 1 to 3 together with the Ascoli-Arzela
theorem we can conclude that P is continuous and
completely continuous.

Claim 4: A priori bounds.
Now it remains to show that the set
E={2€Cy:z=AP(z) forsome 0< <1}

is bounded. Let z € &, then z = AP(z) for some
0 < A < 1. Thus, for each t € J,

t) = A/f(s7§p(57zs+ws) + Ip(s,zs-i-ws))ds'

Then for each t € J, we have

t

2(t)] < A / D()O(Z (0.2, 400 +p(s.2, 10 1),
0
(10)
||§P(5,25+$5) + Zpsz,42.)1B < ||§p(s,35+acs) B

11
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+ ||xp(s735+xs)||l§

< K(t)sup{|z(s)| : 0 < s < t}
+ M (t) 20l 5 + K(t) sup{|z(s)]
10 <s <t}+ M)|zolls

< Kpsup{|z(s)|: 0 < s < t}
+ Moll9l + Ki|(0)],

and then

[Zp(s zotw) T20(s Zatan) I8 < Kpsup{z(s)| (11)

10 < s <t} + My o5 + Kp|p(0)].

12)

If we name w(t) the right hand side of (11), then
we have

|||Ep(s,zs+acs) + Lp(s,zs4zs) B < w(t)'

Therefore (10) becomes

MMSAP@MMW@

Using (13) in the definition of w, we have

13)

mwgmép@wmmwﬂmwmwmww.

Let us take the right hand-side of the last inequality
as v(t). Then we have

w(t) <wo(t) forall teJ,
v(0) = Kp|¢(0)] + My |||,
and
V'(t) = Kpp(t)p(w(t)), ae. teJ.
Using the nondecreasing character of ¢ we get
V'(t) < Kpp(t)(v(t)), ae. ted
That is

J(1)
Sl =

Integrating from O to ¢ we get

/twg
0

Kyp(t), ae. ted

(U(S))ds < Kb/o p(s)ds.

By a change of variable and using (H3) we get

[J:::)%gm/obp@)dx/j%

Hence there exists a constant i, such that
v(t) < K, forall teJ

and hence ||Z; + 2¢]lc < w(t) < K., t € J. From

(13) we have that

b
W%SMKQ/mg@:KL
0
Set
U={yeC:supf{lz(t)], 0<t<b} <Ky +1.

From the choice of U, there is no y € OU such
that y = AP(y) for some A € [0, 1]. The nonlinear
alternative of Leray-Schauder type [14] implies that
P has a fixed point, hence IV has a fixed point which
is a solution of problem (7)-(9). Denote this solution

by y1.
Define the function
rea(t) = Te(yi(t)) —t for ¢ > 0.
(H3) implies that
r1(0) #0 for k=1,...

,m.

If
rk1(t) #0on J for k=1,...,m,

ie
t# 1i(y1(t)) on J for k=1,...,m,

then g7 is solution of the problem (1)-(6).

Now we consider the case when 711(t) = 0 for
some ¢ € J. Since r1,1(0) # 0 and 4 ; is continuous,
there exists ¢; > 0 such that

r1,1(t1) =0 and 71 1(¢) # 0 for all ¢ € [0,¢1).
Thus by (Hs3) we have
rk,1(t) #0 forall t € [0,¢1) and k=1,...,m.

Step 2: Consider the following problem

Y'(t) = f(t, Ypty,)), forae., telty,b] (14)
y(t) = Ly () (15)

y'(t1) = Ly (87)), (16)

y(t) = y«(t), t € (—o0,t] (17)

t), if te[0,t]
), if t€ (—o00,0]

12
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Let
C1 = {y €C((t1,b],R), y(t) exist},
and
Ci ={y:(—00,b] > R:y e C((—o0,t1],R)NC1 }.
Consider the operator N; : C, — C, defined by:

y*(t)v
if te (*Oo,tl],

Ly () + (t—t1) (T (ya(t1)))

if te [tl,b]
t
b [ = 97 vy s
t1
Let z(.) : (—o00,b] — R be the function defined
by
I (yl(tl)) + (t—t1) (11 (1 (t1)))
.”L'(t): if tE(tl,b],

Y« (1),
if te (—007?51].

Then z;, = y1. For each z € C, with z;, = 0, we
denote by z the function defined by

0, if te (—oo,tl],
(t) = {
z(t),

If y(-) satisfies the integral equation
y(t) =Li(yi(t)) + (t = t1) (T (11(1)))

" / (t = $) (5, Yp(s,y.) )ds.

t1

if te [tl,b].

We can decompose y(.) into y(t) = z(t) + z(t),
ty <t <b, which implies y; = Z; + ¢, for every
t € [t1,b], and the function z(-) satisfies

t
Z(t) = / (t - S)f(s7zp(s,fs+ms) + xp(s,Eera:s))dS'

t1

Ct1 = {Z S C*,Z(tl) = 0}
Let the operator P : C;, — Ct, by

t
Pl(z)(t) = / (t_s)f(87gp(s,Eerxs)""xp(s,Eerxs))ds'

ty
As in Step 1 we can show that P; is continuous
and completely continuous and if z is a solution for
the equation z = APy (z) , for some A € (0,1) there
exist K7, > 0 such that

HZHOO < Ky, > 0.

Set
Uy ={y €C, :sup{||z(t)| : t1 <t < b} < Ky, +1.

As a consequence of Leray-Schauder’s nonlinear
alternative type we deduce that P has a fixed point
z in U;. Thus Nj has a fixed point y which is a
solution of problem (14)-(17), denote this solution

by .
Define

T‘kvg(t) = Tk(yg(t)) —t for ¢ Z tl.
If

ri2(t) 0 on (t1,b] for k=1,...,m,
then
| (), ifte][0,t],
y(t){ wlt), ifte (t,b,

is solution of the problem (1)-(6). It remains to
consider the case when

ro2(t) =0, for some t € (t1,b].
By (H4) we have

ra2(tf) = m(y(tf)) —t
= n(i(n(t)) -t
> ni(n(ty)) —t
= ria1(t) =

Since 32 is continuous, there exists ta > t; such
that 7’2’2(152) =0 and 7‘2’2(15) 7é 0 forall t € (tl,tz).
By (Hj3) we have :

rpo # 0 forall ¢t € (t1,t2) and k =2,...,m.

Suppose now that there exists 5 € (¢1,¢2] such that
r1,1(3) = 0. From (Hy) it follows that

rio(tf) = 7)) -t
n(Li(yn(ty)) —t
T1(y1(t1)) —ta
rl,l(tl) =0.

Thus the function r o attains a nonnegative maxi-
mum at some point s; € (¢1,b]. Since

t
)= [ Fsm,, ) )ds
t1

A

then
1 9(s1) = 71 (y2(s1)yh(s1) — 1 =0.

Therefore

Hla(s0) [ I, s = 1
t1 °

13
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which contradicts (Hs)

Step 3: We continue this process and taking into

account that y,,41 := ¥yl 5 is a solution to the
problem

Y (t) = f(t, Yp(ty))s Torae., t € (tm,b], (18)

y(tm) = L (Y (t0)), (19)

Y (th) = T (ym(t))- (20)

The solution y of the problem (1)-(6) is then defined
by

y1(t), ifte (—OO,tl],
t), if t € (t1,b],
Ymar (D) if £ € (tm, b].

IV. EXAMPLE

To apply our results, we consider the functional
differential equation with variables times and state-
dependent delay of the form :

Y (t) = (y(t —a(y(1))))? we
@+ DE+2)(1+ (Yt —o(y®)))?)
21
te (0,1t £ (), k=1,...,m, 22)
Ay|t=m(y(t) I (y(t))’t :Tk(y(t))ﬂk: 1,...,m,
(23)
Ay/|t:7'k(y(i£)) = Tk(y(t))vt = Tk(y(t))a k= ]-7 cee,Mm,
(24)
y<t) = ¢(t)7t € (—OO, O}v (25)
y'(0) =, (26)

where 0 € C(RR, [0, 00)). Set v > 0. For the phase
space, we choose B to be defined by

B, ={y € PC((—o0,0],R) : . lim e"%y(0) exists}
——00
with the norm

sup

€(—00,0

lylly = ]e”ely(H)l,

where
PC((—o00,0],R)

is continuous at t # ty,

y:(—00,0] >R :y
y(t,) = y(ty) and

)

Let y : (—o0,b] — R be such that yy € B,. Then

y(t;) exists for all k=1,...

lim ey(0) =

0——o0

ehm eyt +6)

o0

lim e7=%y(9)

60— —o0

¢ im0

Hence y; € B,. Finally we prove that

lyelly < K (&) supf |y(s)] : 0 < s < t3+M (1) l[yoll,

where K = M = H = 1. We have y(t) = y(t + ¢).
Ift+6<0 we get
19:(0)[| < sup{ [y(s)] : —o0 < s <0}

For ¢t + 6 > 0 we have

lye(O)| < sup{ [y(s)] : 0 < s <t}
Thus for all ¢ + 6 € [0, 1], we get
19:(0)]| < sup{ [y(s)] : —o0 < s <0}
+sup{ [y(s)]: 0 < s <t}

Thus

1921l < llyllo + sup{ [y(s)] : 0 < s <t}

It is clear that (B, ||y||,) is a Banach space. We can
conclude that B, is a phase space.
Set

_ (u(0))?
JG) = D a+ 2 (1 @)
(t,uw) € [0,1] x By,
p(tv u) =t- J(U(O))v (ta 'LL) €

1
Ik(x) = dk(E,

[0,1] x B,

Tk(ic) =2k —

From the the definition of 73, we have 74 (x) # 0 and

1

m>0f0rall z €R

Tr1(x) — () =24
and k=1,....m

So

0<m(x) <m(z) <m(z)<...

Also

< 7 (x) for all = € R.

(b2 — 1)z

Ti(Ip(2)) — () = 2KH1(1 + 22)(1 4 b2a?) —

and

14
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Th1(Ih(2)) — 7(2) =
2831 + 22)(1 + b22?) + 1+ (202 — 1)
2FH1(1 + 22)(1 + bia?)
forall x € Rand k=1,...,m. Thus
Tr(Ix(2)) < (x) <71 (I (z)) for all z € R
and k=1,...,m.

>0

We can easily show that

t
7l (@) / F(8, Uponpy)ds| < 17h(2)

t
N / (5 Yoyl ds

< Ljt—al
“lt—a
-2
< 1.

Assume that p(t) = z' and ¢(z) = 1.Then

()] < g (lully) for all (1) € [0.1] x By
U du
o 0w

It is clear that all conditions of Theorem III.1 are
satisfied. Hence problem (20)-(26) has at least one
solution defined on | — o0, b].
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